

Strangeness Nuclear Physics with HADES

Laura Fabbietti Technische Universität München Excellence Cluster "Universe"

Portait of the dancer Alexander Sacharoff Alexej Jawlenskj Lenbachhaus München Motivation

• Measured Kaon and Antikaon properties in nuclear matter

• Cascade Excess within nuclear matter

GSI, SIS18 and HADES

Fixed Target experiments, $E_{kin} \sim AGeV$

Heavy-ion Collisions $\varrho_B < 2-3 \ \varrho_0$

GSI, SIS18 and HADES

Fixed Target experiments, Ekin~ AGeV

- Test-bed of the strong interaction in few body systems
- Strange quarks are intermediate between "light" and "heavy"
- -> Interplay between spontaneous and explicit chiral symmetry breaking in low energy QCD.
- Testing ground: K-N and K-N interactions
- In-medium behaviour of these interactions and implications for humanity

Strange Effective Hadron-Hadron Interaction

Antikaon

ChPT in SU(3) (exact Theory) does not work for the KN system -> Coupled-Channel Ansatz based on Chiral Dynamics

Ex: Λ (1405) dynamically generated like a <u>QUASI-BOUND K-p</u> (I=0) State

R.H. Dalitz et al.; Phys. Rev. 153 (1967) 1617

Kaon

ChPT is used to describe K-N interaction since Kaons do not get absorbed generating resonances

• Attractive in-medium interaction, strong decrease of the effective mass, major broadening

• Complicated in-medium spectral function due to strong coupling to resonances

Kaon

• Repulsive in-medium interaction, moderate increase of the effective mass

K⁻: Vacuum Properties

\overline{KN} measured $\Lambda(1405)$ in p+p collisions @ 3.5 GeV

G. Agakishiev et al. [HADES] Phys. Rev. C 87 (2013) G. Agakishiev et al. [HADES] Nucl. Phys. A 881 (2012) 178-186.

Shift in the $\Lambda(1405)$ mass

 $\bar{K}NN$ Upper limit determined for ppK- in the reaction $p + p(@3.5GeV) \rightarrow p + K^+ + \Lambda$

Kaons in cold nuclear matter

p+Nb, 3.5 GeV

Kaon interactions in nuclear medium:

- Elastic scattering
- Charge Exchange
- Inelastic reactions
- π-induced secondary reactions...

Data are interpreted with the GiBUU transport model

O. Buss et al., Phys. Rept. 512, 1 (2012) http://gibuu.physik.uni-giessen.de/GiBUU/

K⁰ in p+p: reference measurement

- 4-body states produced via Δ -resonances
- Final states with two pions (5-body) added to the model via NN $\rightarrow \Delta^{++}$ Y* K, Y* is $\Sigma(1385)$ or $\Lambda(1405)$.
- Good description of the elementary reference.

In-medium kaon potential

ChPT potential, ~35 MeV ($\varrho = \varrho_0$, k=0) implemented in the GiBUU transport code for p/ π +A

$$m_{K}^{*} = \sqrt{m_{K}^{2} - \frac{\Sigma_{KN}}{f_{\pi}^{2}}}\rho_{s} + V_{\mu}V^{\mu}$$

$$V_{\mu} = \frac{3}{8f_{\pi}^{*}}j_{\mu}$$

$$E^{*} = \sqrt{\mathbf{k}^{*2} + m_{K}^{*2}} + V_{0}$$

$$\mathbf{k}^{*} = \mathbf{k} - \mathbf{V}$$

$$\Sigma_{KN} = 250 - 450 \,\text{MeV}$$

$$f_{\pi} = 93 \,\text{MeV}, f_{\pi}^{*2} = 0.6f_{\pi}^{2}$$

$$U = E^* - E_{vac.} = E^* - \sqrt{p^2 + m^2}$$

For nuclear matter at rest $\langle V_{1,2,3} \rangle = 0 \Rightarrow k^* = k$

$$U = \sqrt{\mathbf{k}^{*2} + m^{*2}} + V_0 - \sqrt{\mathbf{k}^2 + m_{vac.}^2}, \ m * < m$$

Effect of the potential in p+Nb: pt-y

- Systematical modification of pt-spectra owe to the repulsive potential.
- Uncertainties in the model parameters (np cross sections, ...).

π -induced Reactions

Cerberos

High Statistics pion beams (10⁶ part/sec)
Measured for the first time at GSI in 2014 with HADES
Primary Beam: N 10¹² part/s on Be Target
Momentum Spread: 8%
Beam envelope ∅: 6 cm

Pion-Tracker

Very precise (0.1%) reconstruction of the beam momentum

High Statistics pio Measured for the f Primary Beam: N Momentum Sprea Beam envelope \swarrow

Pion-Tracker

RefMom [GeV/c]	RecMo
2.56	2.58
2.60	2.61
2.64	2.64
2.68	2.68
2.72	2.72
2.76	2.76
2.80	2.80

Nuclear Physics News International

Volume 25, Issue 2 April-June 2015

FEATURING: Issue No. 100!

Taylor & Francis

solution

 $\pi^- + C, \pi^- + {}^{184}_{74} W @ 1.7 \text{ GeV/c}$ W(C): 3 targets, Ø12 mm, M2 Trigger: Mult RPC+TOF>1 2.4(7.2) mm thick

Kaon Identification via dE/dx in the MDC

dE/dx with mass cut

 $\pi^- + C, \pi^- + {}^{184}_{74} W @ 1.7 \text{ GeV/c} W(C): 3 \text{ targets, } \emptyset 12 \text{ mm,}$ M2 Trigger: Mult RPC+TOF>1 2.4(7.2) mm thick

K⁺ mass fits, typical resolution in mass 20-30 MeV/c^2

 $\pi^- + C, \pi^- + {}^{184}_{74} W @ 1.7 \text{ GeV/c}$ W(C): 3 targets, Ø12 mm, M2 Trigger: Mult RPC+TOF>1 2.4(7.2) mm thick

K⁻ mass fits, typical resolution in mass 20-30 MeV/ c^2

mass plot for 15.0 < θ < 27.

&& 200 ~ n ~ 360

RPC Acceptance

K⁻Disappearance

- π-absorption mostly on the nucleus surface
- less model dependent

Disappearance of K⁻ wrt to K⁺ when comparing π +C and π +W

Average measured in the two TOF and RPC detector systems

Remarks:

- Multi-nucleon absorption negligible
- K-Nucleon Absorption: Dominant?
- Check In-medium calculation!!

O. Vasquez Doce<u>: 3a</u>

K⁻Disappearance

- π-absorption mostly on the nucleus surface
- less model dependent

Disappearance of K⁻ wrt to K⁺ when comparing π +C and π +W

Average measured in the two TOF and RPC detector systems

Remarks:

- K⁺ shifted to larger momenta due to repulsive potential
- Ratio could be even smaller
- Extend the study to 600 MeV/c

Acceptance and Efficiency corrections are needed for precise ratios Also the K- disappearance must be taken into account properly -> All transparency Ratio for ϕ are probably much too low!

Subthreshold production wrt N+N collisions

- Why should it get easier to produce objects as (ssd)?
 Quarkyonic Matter formed?
 Look for Cascade production in A+A collisions at low kinetic energies (Ar+KCl @ 1.765 GeV)
- Check also the p+A reference

Ξ^- Production in p+A collisions

p+Nb @ 3.5 GeV

NÜNCHEN

Phys.Rev.Lett. 114 (2015) 21, 212301

1300 1350 1400

 $M_{\Lambda\pi}$

p (3.5 GeV) + Nb

signal/bg = 0.39

significance = 5.0

 $\sigma = (2.4 \pm 0.5) \text{ MeV}$

1450

[MeV]

Ξ signal (±5.0 MeV) = 90 ± 18

Gauss: integral = 91 ± 21

mean = (1317.4 ± 0.6) MeV

 $\sqrt{s_{thr}} = 3.25 \,\mathrm{GeV}, \, E_{thr} = 3.74 \,\mathrm{GeV}$

 $\bar{K}Y \to \pi \Xi$ $YY \to \Xi N$

low cross-section also below threshold, not enough to explain the measured Ξ/Λ yield

[1/(2.5 MeV)] ^{0 8 01}

40

20

 $dN / dM_{\Lambda\pi}$

Ξ^- Excess

The possible contribution of a very heavy resonance produced in p+A reactions exploring the energy "reservoir" provided by the tail of the Fermi-Momentum distribution. This might explain also the excess in Ar+KCl ! J. Steinheimer and M. Bleicher arXiv:1503.07305

Resonances measured in elementary collisions

UNIVERSITÄ

MÜNCHEN

Angular Distributions

HADES Coll. Phys. Rev. C85 (2012) 035203 **PDG Entry 2012**

Resonance production Coupling to different final states

Non-isotropic angular distribution -> has to be measured and modelled correctly to extract the total cross-section

 $\sigma_{\Sigma(1385)^+} = 22.42 \pm 0.88 \pm 1.57^{+3.04}_{-2.23} \,\mu\mathrm{b}$

Resonances measured in elementary collisions

σ

$$p + p \rightarrow \Delta^{++} + n \rightarrow \Sigma(1385)^+ + K^+ + n$$

 $\Delta(1900 - 2000)^{++} \rightarrow \Sigma^+(1385) + K^+$
 $\Gamma = 150 - 200 \,\mathrm{MeV/c^2}$

~ 30%

TECHNISCHE UNIVERSITÄT MÜNCHEN

Chinowsky, W. et al. Phys. Rev. 165 (1968) 1466-1478

Role of the Δ *(1940) in the π +p \rightarrow K+ Σ +(1385) and pp \rightarrow nK+ Σ +(1385) reactions luclum Xie, En Wang, Bing-Song Zou

arxiv.1405.5586

Summary

- * Kaon in matter: hints of a moderate repulsive potential in p +Nb(a)3.5GeV (40 MeV at $o = o_0$ and p = 0)
- * Model dependent interpretation based on transport codes
- * First measurement of Antikaon disappearance in π^- + nucleus reactions
- * Ξ[−] Measurement in Ar+KCl@1.756 AGeV and p+Nb@3.5GeV below threshold and unexpected large yields are observed.
- * New experiments are needed to pin down the creation mechanism