Future plan on Investigation of AN Interactions by Electro-production at JLab

Liguang Tang Hampton University

On Behalf of the JLab Hypernuclear Collaboration

Introduction – Baryonic interactions

Understanding *B-B* interactions is one of the essential tasks in Nuclear Physics: *How the "world was built" by the strong interaction?*

Baryonic Interactions

$$S = 0$$

S = -1

Nuclear ForceLot of NN scattering data

Hyperon Force
Limited YN/YY scattering data

Nuclear Structure
Normal/Exotic

Nuclear Structure
Hypernuclei

Much more difficult

A Hypernuclei

- Novel features of *Λ*-hypernuclei
 - Short range interactions
 - $\Lambda\Sigma$ coupling, Λ NN 3-B forces
 - Change of core structures
 - Drip line limit
- No Pauli blocking to Λ
 - Probe the nuclear interior
 - Baryonic property change or single particle nature of Λ in heavy baryonic system

Electroproduction of Hypernuclei

The (e, e'K⁺) Reaction

- High momentum transfer (~300 MeV/c)
- **Deeply bound, highest spin, both unnatural and natural parity states**
- **❖** Neutron rich hypernuclei and high iso-spin states
- **❖ Capable for high precision that is important for hypernuclear spectroscopy**
- Small production cross section but compensated by high beam intensity

Hypernuclear study with the (e,e'K+) reaction at JLab

- Well established and proven successful in the previous 4- and 6-GeV periods.
- Experiments studied spectroscopy of $^{7}_{\Lambda}$ He, $^{9}_{\Lambda}$ Li, $^{10}_{\Lambda}$ Be, $^{12}_{\Lambda}$ B, $^{28}_{\Lambda}$ Al, and $^{52}_{\Lambda}$ V, with good resolution (~600 keV FWHM) and precision on B_{Λ} .
- Achievements and status on the remaining analyses were reviewed by Prof. S. Nakamura.

Technical Consideration of Future Program

Experimental Design

Key Improvement for Future Program

Physics Consideration of Future Program Current Proposal to the JLab PAC43 (2015)

YN Interactions

Charge Symmetry Breaking

Hyperon Puzzle (Neutron Star)

Part I — Light Hypernuclei

- ⁴_AH spectroscopy (1⁺)
- $P(e,e'K^+)\Lambda$ (small ϑ_{vK})
- Exotic system (Ann)
- Lightest Hypernucleus ³ H

Part II — Mid-Heavy Hypernuclei

- Heaviest possible system
 ²⁰⁸ _ATI (3B force)

Total required beam time at minimum: ~1250 hours (quite long)

Status of Current Proposal (PAC43, 2015)

- PAC recommended to separate the current proposal with two parts in to three experiments and made review accordingly.
- Experiment to measure spectroscopy of $^{40}{}_{\Lambda}$ K and $^{48}{}_{\Lambda}$ K is then conditionally approved. Condition: Resubmit a proposal that focuses on $^{40}{}_{\Lambda}$ K and $^{48}{}_{\Lambda}$ K for iso-spin dependence.
- Few-body part of experiment was deferred. Need to be convinced for physics impact with the achievable precision.
- Heavy hypernuclei part was deferred. Need to be convinced on what heavy hypernuclei are the best for both experimental and theoretical achievement.

For Future Experiments at JLab

 Suggestions, advices, and theoretical input are more than welcome.

For Electro-production Experiments

- Need to work with MAMI together to achieve the best from each facility.
- Decay pion spectroscopy will be further evaluated and considered (regardless at MAMI or JLab). The yield rate needs to be dramatically increased, not relying on increase of beam time.

Summary

- JLab hypernuclear physics program with electroproduction has its uniqueness in the global Strange Nuclear Physics research.
- Remaining results from previous periods need to be published soon.
- It needs to continue in the 12 GeV period. A lot of homework still needs to be done to solidly establish the new program that best utilizes the uniqueness offered by the electro-production.

Welcome to U.S. for HYP2018

Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia