Impurity effects in Lambda hypernuclei

<u>Masahiro Isaka¹</u>

¹ RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198, Japan.

One of the unique and interesting aspects of hypernuclei is structure change due to the addition of a Λ particle as an impurity. Since a Λ particle is unaffected by the nuclear Pauli principle in hypernuclei, it can penetrate into nuclear interior and modify nuclear structure through the interactions between the Λ and nucleons. So far, experimental and theoretical studies have revealed a couple of interesting structure changes in *p*-shell Λ hypernuclei.

Now, it is expected that the forthcoming (and on-going) experiments at J-PARC and JLab, etc. enable us to obtain structure information of heavier Λ hypernuclei. Particularly, it is of interest to reveal structure changes in *p-sd* shell and neutron-rich Λ hypernuclei, because the corresponding core nuclei have various structures in the ground and low-energy regions. For example, it has been discussed that Be isotopes have the exotic structures associated with the 2α clustering near the ground states. In a typical *sd*-shell nucleus ²⁰Ne, deformed mean-field like and α +¹⁶O cluster structures coexist in the same energy region. In *sd*-shell regions, various deformations also appear in the ground-state regions. For instance, Mg isotopes such as ²⁴Mg and ²⁶Mg are the candidates of triaxial deformed nuclei. Therefore, it is expected that the addition of a Λ particle to these nuclei causes various structure changes.

To investigate such phenomena, we have extended the antisymmetrized molecular dynamics (AMD) model to Λ hypernuclei [1] and applied it to several *p-sd* shell Λ hypernuclei. In neutronrich $^{12}_{\Lambda}$ Be, it has been predicted that the ground-state parity of ¹¹Be is reverted by a Λ particle [2]. In $^{21}_{\Lambda}$ Ne, it was found that a Λ particle largely reduces the intra-band B(E2) values in the excited $\alpha + {}^{16}$ O + Λ band than those in the ground band [3]. In this talk, we will show our recent results obtained by the AMD calculations for several *p-sd* shell and neutron-rich Λ hypernuclei such as Be, C, Ne and Mg, and discuss possible structure changes by a Λ particle.

- [1] M. Isaka, M. Kimura, A. Dote, and A. Ohnishi, Phys. Rev. C83,044323 (2011),
- [2] H. Homma, M. Isaka, and M. Kimura, Phys. Rev. C91,014314 (2015),
- [3] M. Isaka, M. Kimura, A. Dote, and A. Ohnishi, Phys. Rev. C83,054304 (2011).