Pole of the S-matrix of the ${}_{\Sigma}^{4}$ He hypernucleus on Riemann sheets

T. Harada¹, Y. Hirabayashi²

¹Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan.

²Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan.

In this note, we focus on a pole position of the S matrix for a ${}^{4}_{\Sigma}$ He hypernucleus on the Riemann sheets in the complex E plane. The existence of the ${}^{4}_{\Sigma}$ He hypernucleus is experimentally confirmed in a ${}^{4}\text{He}(K^{-}, \pi^{-})$ reaction at $p_{K^{-}} = 0.6 \text{ GeV/c}$ [1]. This state may be identified as an *s*-wave Σ quasibound (or unstable bound) state with $J^{\pi} = 0^{+}, T \simeq 1/2$ [2]. Recently, we demonstrated the inclusive and Σ - Λ conversion spectra in the ${}^{4}\text{He}(K^{-}, \pi^{-})$ reaction at 1.5 GeV/c [3] in order to obtain evidence for *p*-wave Σ resonant states at J-PARC experiments. This investigation may lead to the quantitative understanding of ΣN interaction.

Now let us evaluate a pole position of the 3-channel coupled system in a $({}^{3}\text{He}-\Lambda)+({}^{3}\text{H-}\Sigma^{+})+({}^{3}\text{He}-\Sigma^{0})$ model [2], solving the multichannel Lippmann-Schwinger equation with a phenomenological 3N-Y potential determined by theoretical analyzes [1]. For *s*-waves, we confirm the Σ quasibound state with $J^{\pi} = 0^{+}$, $T \simeq 1/2$ in ${}^{4}_{\Sigma}$ He, as shown in Fig. 1. The pole is located at $\mathcal{E}_{\Sigma^{+}} = -1.1-i6.3$ MeV near the Σ threshold on the *second* Riemann sheet [- + +]. For *p*-waves, we consider a potential obtained by introducing strength factors of N_{R} and N_{I} into the *s*-wave potential we used, because the potential is still unknown; N_{R} and N_{I} denote the factors for the real and imaginary parts, respectively. If we choose $N_{R} = 1.0$ and $N_{I} = 1.0$ as the same *s*-wave potential, we find a Σ resonant state with $J^{\pi} = 1^{-}$, $T \simeq 1/2$ at $\mathcal{E}_{\Sigma^{+}} = +1.4-i3.1$ MeV on the *fourth* Riemann sheet [- - -], as shown in Fig. 2. We obtain the pole position of ${}^{4}_{\Sigma}$ He when changing (N_{R}, N_{I}) , and study the shape and magnitudes of the corresponding inclusive and conversion spectra in the ${}^{4}\text{He}(K^{-}, \pi^{-})$ reaction [3]. Consequently, we predict the possible existence of the *p*-wave Σ resonant state in ${}^{4}_{\Sigma}$ He near the Σ threshold on the Riemann sheets.

Figure 1: Pole of the S-matrix of the s-wave state with $J^{\pi} = 0^+$ at $\mathcal{E}_{\Sigma^+} = -1.1 - i6.3$ MeV on the [+ --] sheet in the $\frac{4}{\Sigma}$ He hypernucleus.

Figure 2: Pole of the S-matrix of the *p*-wave state with $J^{\pi} = 1^{-}$ at $\mathcal{E}_{\Sigma^{+}} = +1.4-i3.1$ MeV on the [---] sheet in the $\frac{4}{\Sigma}$ He hypernucleus.

- [1] T. Nagae, et al., Phys. Rev. Lett. 80 (1998) 1605.
- [2] T. Harada, Phys. Rev. Lett. 81 (1998) 5287; Nucl. Phys. A 672 (2000) 181.
- [3] T. Harada, Y. Hirabayashi, Phys. Lett. B740 (2015) 312.