The 12th International Conference on Hypernuclear and Strange Particle Physics (Hyp2015) September 7-12, 2015, Sendai, Japan

Pole of the S-matrix of the Σ^4 He hypernucleus on Riemann sheets

T. Harada, Y. Hirabayashi[†]

Osaka Electro-Communication University, Neyaawa 572-8530, Japan † Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan

Outline

- 1. Introduction
- 2. Properties of Σ -nucleus potentials
- 3. Calculations Pole search of the *Y-3N* system on Riemann sheets
- 4. Results and discussion
 S-wave Σ ground state: ⁴_Σ⁴He (0⁺) *P*-wave Σ excited state: ⁴_Σ⁴He (1⁻)
 in ⁴He(K⁻,π⁻) reactions at 1.5 GeV/c

 5. Summary

Our understanding for Σ hypernuclei

There is a Σ hypernucler state. - $\Sigma N(I = 1/2, {}^{3}S_{1})$ may be a threshold cusp. - A strange partner of the deuteron - A bound state of ${}_{\Sigma}{}^{4}$ He with T = 1/2, $J^{\pi} = 0^{+}$ is established. - A strange partner of the α particle

There is a strong isospin dependence of Σ -nucleus potentials in light nuclei, so that no narrow bound state from ⁶Li and ⁹Be targets (A > 4).

 \frown Σ -nucleus potentials may be repulsive.

- Repulsion inside the nuclear surface and an attraction outside the nucleus.

- Consistent with (π^-, K^+) spectra and Σ^- atomic x-ray data.

Observation of a ${}_{\Sigma}^{4}$ He Bound State at BNL(1995)

Phys. Rev. Lett. 80 (1998) 1605.

Our understanding for Σ hypernuclei

There is a Σ hypernucler state. - $\Sigma N(I = 1/2, {}^{3}S_{1})$ may be a threshold cusp. - A strange partner of the deuteron - A bound state of ${}_{\Sigma}{}^{4}$ He with T = 1/2, $J^{\pi} = 0^{+}$ is established. - A strange partner of the α particle

There is a strong isospin dependence of Σ -nucleus potentials in light nuclei, but no narrow bound states are in the reactions from ⁶Li and ⁹Be targets (A > 4).

Σ-nucleus potentials may be repulsive in heavier nuclei.
 Repulsion (caused by T=3/2, ³S₁) inside the nuclear surface and an attraction outside the nucleus.
 Consistent with (π⁻,K⁺) spectra and Σ⁻ atomic x-ray data.

Inclusive spectrum in ²⁸Si(π⁻, K⁺) reaction at 1.2GeV/c

Exp. Data from P.K.Saha, H. Noumi, et al., PRC70(2004)044613

• Recently, we demonstrated the inclusive and Σ - Λ conversion spectra in the ⁴He(K⁻, π ⁻) reaction at p_{π -=1.5GeV/c at J-PARC in order to obtain evidence for *P*-wave Σ resonant states of the Σ^4 He hypernucleus.

[T. Harada, Y. Hirabayashi,PLB740 (2015) 312.]

In this talk,

• We focus on a pole position of the *S* matrix for a ${}_{\Sigma}{}^{4}$ He hypernucleus on the Riemann sheets in the complex *E* plane in order to see the structure of *S*- and *P*-wave states in Σ -hypernuclei.

This state is identified as a *S*-wave Σ quasibound (or unstable bound) state with J = 0+, $T \simeq 1/2$. How about *P*-waves ? (no information)

Why do we study Σ hypernuclear states ?

- > The advantage of Σ hypernuclear study in the (K⁻, π^-) reaction at 1.5GeV/c in the J-PARC facilities
- i. Large cross sections for Σ production
 - $d\sigma(\Sigma^+)$ at 1.5GeV/c $\cong 10 \times d\sigma(\Sigma^+)$ at 0.6GeV/c
- ii. Momentum transfer that we controlled
 - depending on angular distributions
 - P-wave Σ states are rather excited.
- iii. Strange partner of the α particle - Nuclear SU(4) supermultiplet: $4 \otimes 4=1 \oplus 15$

Why do we study Σ hypernuclear states ?

- > The advantage of Σ hypernuclear study in the (K⁻, π^-) reaction at 1.5GeV/c in the J-PARC facilities
- i. Large cross sections for Σ production
 - $d\sigma/d\Omega(1.5 \text{GeV/c}) \cong 10 \times d\sigma/d\Omega(0.6 \text{GeV/c})$
- ii. Momentum transfer that we controlled
 - depending on angular distributions
 - *P*-wave Σ states are rather excited.
- iii. Strange partner of the α particle
 - Nuclear SU(4) supermultiplet: $4 \otimes 4 = 1 \oplus 15$

Momentum transfer q_{Σ} for Σ production

Is there P-wave Σ excited states ?

Properties of \Sigma-nucleus potentials

<u>Remarks</u>

Properties of the Σ -nucleus potentials

$$U_{\Sigma}(\boldsymbol{r}) = U_{\Sigma}^{0}(\boldsymbol{r}) + \frac{1}{A_{\text{core}}} U_{\Sigma}^{\tau}(\boldsymbol{r}) (\vec{\boldsymbol{T}}_{\text{core}} \cdot \vec{\boldsymbol{t}}_{\Sigma})$$

"repulsion inside the nuclear surface" "shallow attraction outside the nucleus" "strong isospin-dependence"

Σ-3N potential: the $_{\Sigma}^{4}$ He bound state with T=1/2, J^π=0⁺

Strong Lane (isospin-dependent) potential and Coherent Λ - Σ coupling

Isospin dependence of the *3N***-Σ potentials**

Lane and Λ - Σ coupling terms in the 3N-Y potential

Microscopic folding model based by g-matrix D2'g: $g_{S,T}^{\Sigma N} g_{S,1/2}^{\Lambda N,\Sigma N}$

<u>Coherent A- Σ coupling in s-shell A hypernuclei</u>

NPA684(2001)586c

Y. Akaishi, T.Harada, S.Shinmura, Khun Swe Myint, PRL84(2000)3539

Calculations

for pole search on multichannel Riemann sheets

Solving the multichannel Lippmann-Schwinger equation

$$\begin{split} \text{Lippmann-Schwinger equation} & |\Psi^{(+)}\rangle = |\phi_{k}\rangle + \frac{1}{E - H_{0} + i\varepsilon} U|\Psi^{(+)}\rangle \\ \text{Partial wave expansion} & R_{\beta\alpha}^{\ell}(k_{\beta}, r) = k_{\alpha}rj_{\ell}(k_{\alpha}r)\delta_{\beta\alpha} \\ & + \sum_{\gamma} \int_{0}^{\infty} dr' g_{\beta,\ell}^{(+)}(k_{\beta}; r, r') U_{\beta\gamma}(r') R_{\gamma\alpha}^{\ell}(k_{\gamma}, r') \\ \text{Green's function for } \beta\text{-channel with boundary conditions} \\ & \text{Pearce, Gibson, PRC40(1989)902} \\ g_{\beta,\ell}^{(+)}(k_{\beta}; r, r') = \begin{cases} \frac{2\mu_{\beta}}{\hbar^{2}} \frac{2}{\pi}rr' \int_{0}^{\infty} \frac{p^{2}j_{\ell}(pr)j_{\ell}(pr')}{k_{\beta}^{2} - p^{2} + i\varepsilon} dp & (+) \text{ sheet} \\ \frac{2\mu_{\beta}}{\hbar^{2}} \frac{2}{\pi}rr' \left(\int_{0}^{\infty} \frac{p^{2}j_{\ell}(pr)j_{\ell}(pr')}{k_{\beta}^{2} - p^{2} + i\varepsilon} dp - 2\pi i \text{Res}|_{p=-k} \right) \underbrace{f_{p=k}^{p=-k}}_{p=-k} \\ \text{Multichannel T matrix (or S matrix)} \\ & 2\mu_{\beta} = \int_{0}^{\infty} dr' g_{\beta}^{(k)}(k_{\beta}, r, r') \end{cases}$$

$$T^{\ell}_{\beta\alpha}(E) = -\frac{2\mu_{\beta}}{\hbar^2} \sum_{\gamma} \int_0^\infty r'^2 dr' j_{\ell}(k_{\beta}r') U_{\beta\gamma}(r') \frac{R^{\epsilon}_{\beta\alpha}(k_{\gamma},r')}{k_{\gamma}r'}$$

Interconnection of the sheets on crossing the real E axis

Poles of the S matrix of Σ^{4} He on Riemann Sheets

$$J^{\pi}=1^{-}(p-wave)$$
 $N_{R}=1.0, N_{I}=1.0$

Results and discussion

Pole behavior on Riemann sheets

Poles trajectory of the S matrix of Σ^4 He on Riemann Sheets

Poles trajectory of the S matrix of Σ^4 He on Riemann Sheets

Poles positions of the S matrix of Σ^{4} He

Case	N_R	N_I		Sheet $[+]$			Sheet $[]$		
			E_{Σ^+}	E_{Σ^0}	$\frac{1}{2}\Gamma_{\Sigma}$	E_{Σ^+}	E_{Σ^0}	$\frac{1}{2}\Gamma_{\Sigma}$	
			(MeV)	(MeV)	(MeV)	(MeV	(MeV)	(MeV)	
А	0.6	0.9	+2.8	+0.0	5.9	+2.3	-0.4	5.3	
A′	0.6	0.0	+3.8	+1.1	5.7	+3.9	+1.1	4.9	
В	0.0	0.9	+2.9	+0.2	7.7	+2.9	+0.2	7.8	
С	1.0	1.0	+1.4	-1.3	4.3	+1.4	-1.3	3.1	

Probability of the channel β *component*

Σ resonant state

$$P_{\beta} = \int_{0}^{a_{c}} |\phi_{\beta}(r)|^{2} r^{2} dr$$
$$\sum_{\beta} \int_{0}^{a_{c}} |\phi_{\beta}(r)|^{2} r^{2} dr = 1$$

$$\beta$$
 = 3He-A, ³H- Σ^+ , ³He- Σ^0
[--+] 23% 68% 9%
[---] 25% 49% 26%
 $a_c = 1.65 \text{ fm}$

Poles trajectory of the S matrix of Σ^{4} He on Riemann Sheets

Poles of the S matrix of Σ^4 He on Riemann Sheets

Σ -production spectra

⁴He(K⁻, π ⁻) reactions at 1.5 GeV/c

Coupled-channel calculations in one-step process

Inclusive spectrum in ⁴He(K⁻, π⁻) reaction at 1.5GeV/c

Inclusive spectrum in ⁴**He**(K⁻, π⁻) **reaction at** 1.5GeV/c

Inclusive spectrum in ⁴He(K⁻, π⁻) reaction at 1.5GeV/c

Conversion spectrum in ⁴He(K⁻, π⁻) reaction at 1.5GeV/c

Remarks

We have indicated the existence of the *p*-wave Σ resonant state in ${}_{\Sigma}{}^{4}$ He with $J = 1^{-}$, $T \simeq 1/2$, of which the poles are located near

Summary

- We have shown that a promising signal of the ${}_{\Sigma}{}^{4}$ He resonant state could be clearly observed above the Σ threshold in the conversion spectrum by the tagged- Λ measurements.
- The angular distributions of the inclusive and conversion spectra provide significant information on the nature of the *p*-wave resonant state and the Σ -nucleus potential.
- This work is the first attempt to search for a *p*-wave Σ resonant state. We expect that such ⁴He(*K*⁻, π⁻) experiments are carried out at J-PARC facilities in the near future.

Thank you very much.