

Experimental study of YN interaction in the neutron rich environment produced via the ⁶Li(π^- , K⁺)X reaction

R. Honda (Osaka University.) For the J-PARC E10 collaboration.

Outline

- Introduction
- J-PARC E10 experiment
- Latest analysis result
 - Improvement
 - Final spectra
- Discussion
- Summary

Physics motivation

How deeply bound ?

Production of the extremely neutron-rich hypernuclei.

- The glue like role of the Λ particle in nuclei could stabilize the unbound ${}^{\rm 5}{\rm H}$ system.
- Leading the understanding of the structure of nuclei, which close to the neutron-drip line.

$\Lambda\text{-}\Sigma$ coupling in the neutron-excess environment.

- Key to explain the level structure of Λ hypernuclei. Especially, this is quite important in light system.
- The coupling effect is expected to be enhanced in the neutron-excess environment by summed up coherently.

Production via the double-charge exchange reaction

The KEK-PS E521 experiment

 ${}^{10}_{\Lambda}$ Li production via the 10 B(π , K)X reaction at 1.05 and 1.20 GeV/c.

The (π, K^{+}) reaction is suitable to produce the hypernuclei with quite small cross section because of its back ground free property.

The production of the neutron-rich hypernucleus was observed, but no peak was seen.

[P. K. Saha, et al., PRL 94 (2005) 052502.]

J-PARC E10 experiment

J-PARC E10 Experiment

Missing mass spectroscopy at J-PARC K1.8 carried out in 2012 and 2013

The ⁶Li(π^- , K^+)X reaction @ 1.2 GeV/c with ⁶Li target (3.5 g/cm², 95.54% enriched).

Expected production cross section of ${}^{6}_{\Lambda}$ H hypernucleus.

• Order of nano barn. (From KEK-PS E521)

A large number of pion beams $(3x10^{12})$ using 10 M/spill beam (spill length = 2 s.)

Data	Momentum	Reaction	Target	Intensity	N _{pion}
	$({ m GeV}/c)$			(M pions/spill)	-
$^6_{\Lambda}\mathrm{H}$	1.2	(π^{-}, K^{+})	⁶ Li	12	$1.7 imes 10^{12}$
$^{12}_{\Lambda}{ m C}$	1.2	(π^+, K^+)	graphite	4	$5.4 imes 10^{10}$
Σ^{-}	1.37	(π^-, K^+)	polyethylene	10	4.1×10^{10}
Σ^+	1.37	(π^{+}, K^{+})	polyethylene	3.5	3.1×10^9
beam through	0.8, 0.9, 1.0, 1.2		none		

[R. Honda, Doctoral thesis.]

Production run

 Finally, the effective number of pions were 1.7x10¹² in 13 days beam time using 10 - 12 M/spill beam.

${}^{12}{}_{\Lambda}\text{C}$ production

• Estimate missing-mass resolution and the mass uncertainty.

$\Sigma^{+/-}$ production

- Calibrate momentum.
- Confirm validity of our analysis by comparing with the past experimental data.

Last analysis result

No peak structure.

Only 3 events around the ${}^{4}{}_{\Lambda}$ H + 2n mass threshold.

Upper limit : 1.2 nb/sr (90% C.L.)

It was not concluded that these events were really whether signal or background.

Improvements in the latest analysis.

- Missing mass resolution
 - To set the narrower integral region if events are remained.
- Back ground level
 - To confirm these events are signal or background.

Latest analysis results ${\rm ^{12}}_{\Lambda}{\rm C}/\Sigma^{+/-}$

 $^{12}\Lambda$ C analysis

Reconsidered the momentum correction for each spectrometer to improve the momentum resolution.

Gaussian fitting result. Missing mass resolution

- 3.2 MeV (FWHM), (PLB result)
- 2.6 ± 0.2 MeV (FWHM), (Present)

$-B_{\Lambda}$ of the ground state

- -11.1 ± 0.2 (stat) MeV (Present)
- (-10.76 MeV, NPA 547(1992), 369c)

The mass uncertainty

less than 1.0 MeV

(Including systematic errors)

Good agreement with the past experimental data.

Latest analysis results Background reduction

m² distribution in production run

Pion/proton contaminate the kaon region due to wrong timing information of time0 counter caused by the quite high intensity beam condition.

Reduce BG events using other information except for TOF timing information.

Since this is almost beam TOF between BH2 and SFT, it should make one peak.

2nd peak over 2 ns was made due to the wrong BH2 timing.

14

Timing information

between the time0 counter and the fiber tracker.

Reduce BG events using TOF ADC

Events except for K like were rejected.

Latest analysis results Final spectrum

Back ground level 0.39 counts/(MeV/c²) (PLB result) 0.05 counst/(MeV/c²) (Present)

0.56 nb/sr (90% C.L.) (Present)

- Three events around ${}^{4}{}_{\Lambda}$ H + 2n threshold were seems to be background.
- The present upper limit was 10 times smaller than our expectation. Quite difficult to produce the ${}^{6}_{\Lambda}$ H hyperncleus by this experimental method.
- On the other hand, several events were seen between t + 2n + Λ and p + 4n + Λ threshold. Some excited states may exist, but at least 10 times statistics is necessary to observe them.