Study of A-n Interaction via FSI in y+d Reaction

- Feasibility in the NKS2 Experiment -

Masashi Kaneta for the NKS2 Collaboration

Department of Physics, Tohoku University

2015/9/7

The 12th International Conference on Iypernuclear and Strange Particle Physics

HYP2015

September 7 – 12, 2015 Tohoku University, Sendai, Japa

Motivation

Study of nuclear force with strangeness

• Hypernuclear experiment

- Hadronic reaction
 - CERN-PS, BNL-AGS, KEK-PS, DA¢NE, J-PARC
- Electro-Magnetic reaction
 - JLab, MAMI
- Heavy ion reaction
 - GSI, BNL-RHIC, CERN-LHC

Hyperon-nucleon scattering

- Λ-p at Fermi Lab, Σ-p at J-PARC
- How about hyperon-n elastic scattering?

The first observation of a hypernucleus.

Motivation

Study of nuclear force with strangeness

• Hypernuclear experiment

- Hadronic reaction
 - CERN-PS, BNL-AGS, KEK-PS, DAØNE, J-PARC
- Electro-Magnetic reaction
 - JLab, MAMI
- Heavy ion reaction
 - GSI, BNL-RHIC, CERN-LHC

Hyperon-nucleon scattering

- Λ-p at Fermi Lab, Σ-p at J-PARC
- How about hyperon-n elastic scattering?

→ Experimentally difficult

The first observation of a hypernucleus.

Motivation

Study of nuclear force with strangeness

• Hypernuclear experiment

- Hadronic reaction
 - CERN-PS, BNL-AGS, KEK-PS, DA¢NE, J-PARC
- Electro-Magnetic reaction
 - JLab, MAMI
- Heavy ion reaction
 - GSI, BNL-RHIC, CERN-LHC

Hyperon-nucleon scattering

- Λ-p at Fermi Lab, Σ-p at J-PARC
- How about hyperon-n elastic scattering?
 - \rightarrow Experimentally difficult

The first observation of a hypernucleus.

We need the other data to understand NN, YN, YY force

• Using FSI in $\gamma + d$ reaction for $K^+ + \Lambda$ production

• Using FSI in $\gamma + d$ reaction for $K^+ + \Lambda$ production

• Using FSI in $\gamma + d$ reaction for $K^+ + \Lambda$ production

 Λn interaction in Final State Interaction (FSI)

• Using FSI in $\gamma + d$ reaction for $K^+ + \Lambda$ production

 Λn interaction in Final State Interaction (FSI)

The other capability is $K^-+d \rightarrow \gamma + \Lambda + n$, but.....

FSI Effect in the K⁺ Cross-section

The shape of the curves

- Enhancement in forward K⁺
- variations: order of 10%
- Highly accurate measurements are required
 - in order to be able to distinguish among different potential models

4

H. Yamamura et al., Phys. Rev C61 (1999) 014001

FIG. 2. The inclusive $\gamma(d, K^+)$ cross section as a function of lab momenta p_K for $\theta_K = 0^\circ$ and photon lab energy $E_{\gamma} = 1.3$ GeV. The plane wave result is compared to two YN force predictions. The FSI effects are especially pronounced near the $K^+\Lambda N$ and $K^+\Sigma N$ thresholds, the locations of which are indicated by the arrows.

Preceded Experiment

Study about Ap Interaction

THE EUROPEAN

PHYSICAL JOURNAL A

Eur. Phys. J. A **21**, 313–321 (2004) DOI 10.1140/epja/i2003-10203-3

Analysis of the Λp final-state interaction in the reaction $p+p \to K^+(\Lambda p)$

q

F. Hinterberger^{1,a} and A. Sibirtsev^{2,3}

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is taken into account by introducing a FSI enhancement factor $|C_{\rm FSI}|^2$,

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_K \mathrm{d}M_{\Lambda p}} = |\mathcal{M}|^2 |C_{\mathrm{FSI}}|^2 \Phi_3, \qquad (3)$$

where now \mathcal{M} is a pure production matrix element and the FSI amplitude C_{FSI} depends on the internal momentum q of the Λp subsystem. It converges to 1 for $q \to \infty$ where the S-wave FSI enhancement vanishes.

$$C_{\rm FSI} = \frac{q - i\beta}{q + i\alpha}, \qquad |C_{\rm FSI}|^2 = \frac{q^2 + \beta^2}{q^2 + \alpha^2}. \tag{4}$$

The potential parameters α and β can be used to establish phase-equivalent Bargmann potentials [44,45]. They are related to the scattering lengths a, and effective ranges rof the low-energy S-wave scattering

$$\alpha = \frac{1}{r} \left(1 - \sqrt{1 - 2\frac{r}{a}} \right), \quad \beta = \frac{1}{r} \left(1 + \sqrt{1 - 2\frac{r}{a}} \right). \quad (5)$$

The Λp system can couple to singlet ${}^{1}S_{0}$ and triplet ${}^{3}S_{1}$ states. Near production threshold the singlet-triplet transitions due to the final-state interaction cannot occur. Therefore, the contributions of the spin-singlet and spin-triplet final states can be added incoherently. Taking the spin-statistical weights into account the unpolarized double differential cross-section may be written as

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega_{K}\mathrm{d}M_{Ap}} = \Phi_{3} \left[0.25 \, |\mathcal{M}_{s}|^{2} \, \frac{q^{2} + \beta_{s}^{2}}{q^{2} + \alpha_{s}^{2}} \right. \\ \left. + 0.75 \, |\mathcal{M}_{t}|^{2} \, \frac{q^{2} + \beta_{t}^{2}}{q^{2} + \alpha_{t}^{2}} \right].$$
(6)

This equation leaves six free parameters, the singlet and triplet potential parameters α_s , β_s , α_t , β_t and the production matrix elements $|\mathcal{M}_s|$ and $|\mathcal{M}_t|$. Instead of the parameters α_s , β_s , α_t and β_t one can equally well use the singlet and triplet scattering length and effective-range parameters a_s , r_s , a_t and r_t . The functional dependence on the invariant mass $M_{\Lambda p}$ can be evaluated by inserting the corresponding expression for the internal momentum q of the Λp system,

$$=\frac{\sqrt{M_{Ap}^{2}-(m_{A}+m_{p})^{2}}\sqrt{M_{Ap}^{2}-(m_{A}-m_{p})^{2}}}{2M_{Ap}}.$$
 (7)

Fig. 4. Same as in fig. 1. Solid lines: Fit curves with parameters given by eq. (15) from a combined five-parameter fit of the missing-mass spectrum and the total-cross-section data, dashed line: phase space distribution, dotted lines: singlet contributions, dash-dotted lines: triplet contributions.

Enhancement Factors of An FSI

	Refs.	a _s [fm]	r _s [fm]	a _t [fm]	r _t [fm]		
Nijmegen D	PRD15 (1977) 2547	-2.03	3.66	-1.84	3.32		
Nijmegen F	PRD20 (1979) 1633	-2.40	3.15	-1.84	3.37		
NSC89	PRC40 (1989) 2226	-2.86	2.91	-1.24	3.33		
NSC97a		-0.77	6.09	-2.15	2.71		
NSC97b		-0.97	5.09	-2.09	2.80		
NSC97c	PRC59 (1999) 3009	-1.28	4.22	-2.07	2.86		
NSC97d		-1.82	3.52	-1.94	3.01		
NSC97e		-2.24	3.24	-1.83	3.14		
NSC97f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.68	3.07	-1.67	3.34		
Jülich A (ΛN)		-1.56	1.43	-1.59	3.16		
Jülich A~ (ΛN)	NIDA 570 (1004) 542	-2.04	0.64	-1.33	3.91		
Jülich B (ΛN)	NPA570 (1994) 545	-0.56	7.77	-1.91	2.43		
Jülich B~ (ΛN)		-0.40	12.28	-2.12	2.57		
Verma	PRC22 (1980) 229	-2.29	3.14	-1.77	3.25		
Bhaduri (Set I, ΛN)	PR 155 (1967) 1671	-2.46	3.87	-2.07	4.50		

Note: It is assumed that the production matrix of single and triplet are the same.

NKS2 Experiment

(The recent results will be shown in Parallel 2b by H. Kanda)

Photon Beam Line

in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

Photon Beam Line

in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

- Tagged photon beam
 - *E*γ = 0.80-1.08 GeV
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto

Acceptance

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance

11

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance

11

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance

11

• Covering large kinematic region including forward angle

0.42 T

Dipole

Magnet

Photon beam

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PM
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance

11

• Covering large kinematic region including forward angle

0.42 T Dipole Magnet

Photon beam

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto -
- Acceptance

11

• Covering large kinematic region including forward angle

0.42 T Dipole Magnet

Photon beam

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.08 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance

11

Particle Identification

12

Particle Identification

Feasibility in NKS2

Feasibility Study by a Simulation

- FSI affects to cross section
 - Using effective range approximation
 - Large in low relative momentum region
 - How looks like in K and A distribution (p and θ)?
- Acceptance
 - K^+ single, and $K^++\Lambda$ coincidence
- Study by a Monte-Carlo simulation
 - GEANT4 based
 - $\gamma + d \rightarrow K^+ + \Lambda + n$
 - Kaon-MAID: $\gamma + p \rightarrow K^+ \Lambda$
 - Applying the effect of Fermi motion inside of deuteron
 - New K⁺ ID detector
 - same acceptance with current outer hodoscopes

K⁺ angle vs. K⁺ momentum

15

the

K⁺ Single Measurement (MC studied)

- 2 track trigger requested
- Geometrical acceptance for *K*⁺:
 - ~20-30% (varied by relative momentum)
 - note: ~1-2 % for $K^++\Lambda$
- If requesting of < 3% error
 - in each 100 MeV step of Eγ bin
 - total number of K^+ event: ~50000

K⁺ Single Measurement (MC studied)

K⁺ Single Measurement (MC studied)

Ale

Summary

• Λn interaction via FSI effect

• $\gamma + d \rightarrow K^+ + \Lambda + n \text{ and } \gamma + p \rightarrow K^+ + \Lambda$

NKS2 experiment

- NKS2 spectrometer covers forward angle region
- Liquid Deuterium and Hydrogen target
- Strangeness photo-production near the threshold

• Feasibility of measurements of the Λn interaction

- Studied by the MC simulation based on GEANT4
 - K⁺ single measurement
 - ~20-30% geometrical acceptance (for Λn relative momentum <300 MeV/c)
 - ~150 days of beam time for 50000 event
 - $K^+ \Lambda$ coincidence measurement
 - ~1-3% geometrical acceptance (for Λn relative momentum <300 MeV/c)
 - Capability of the complete measurement of kinematics
 - A recoil polarization may give us more information
 - need helps of theoretical study
 - •single/triplet separation?

Scattering length and Effective range for Ap interaction

Model	a_s (fm)	r_s (fm)	a_t (fm)	r_t (fm)	$ \mathcal{M}_s ^2$ (b/sr)	$ \mathcal{M}_t ^2~~\mathrm{(b/sr)}$	χ^2	$\chi^2/\text{n.d.f.}$
Nijm a	-0.71	5.86	-2.18	2.76	$0.\pm0.1$	22.8 ± 0.2	47.6	1.22
Nijm b	-0.90	4.92	-2.13	2.84	$0.\pm 0.1$	23.4 ± 0.2	53.9	1.38
Nijm c	-1.20	4.11	-2.08	2.92	$0.\pm 0.1$	23.9 ± 0.2	62.2	1.60
Nijm d	-1.71	3.46	-1.95	3.08	$0.\pm 0.1$	25.0 ± 0.2	83.3	2.14
Nijm e	-2.10	3.19	-1.86	3.19	77.5 ± 0.7	$0.\pm 0.1$	76.6	1.97
Nijm f	-2.51	3.03	-1.75	3.32	74.7 ± 0.7	$0.\pm 0.1$	44.8	1.15
Jül Ã	-2.04	0.64	-1.33	3.91	7.3 ± 0.5	7.8 ± 1.6	55.9	1.43
Jül $ ilde{\mathrm{B}}$	-0.40	12.28	-2.12	2.57	$0.\pm 0.1$	21.3 ± 0.2	43.6	1.12
Jül A	-1.56	1.43	-1.59	3.16	33.8 ± 0.3	$0.\pm 0.1$	80.2	2.06
Jül B	-0.56	7.77	-1.91	2.43	$0.\pm 0.1$	20.1 ± 0.2	55.5	1.42
NSC	-2.78	2.88	-1.41	3.11	71.6 ± 0.7	$0.\pm 0.1$	32.8	0.84
Nijm D	-1.90	3.72	-1.96	3.24	$0.\pm0.2$	26.1 ± 0.2	91.6	2.35
Nijm F	-2.29	3.17	-1.88	3.36	77.4 ± 0.7	$0.\pm 0.1$	62.6	1.61
Jül 03	-1.02	4.49	-1.89	2.57	$0.\pm0.1$	21.3 ± 0.2	62.4	1.60

Table 2. Test of potential model results performed with two-parameter fit.

EPJ A21 (2004) 313

Production matrix elements of Λp Singlet and Triplet state are varied by model

Effective Range and Scattering Length for An interaction

	Refs.	a _s [fm]	r _s [fm]	a _t [fm]	r _t [fm]
Nijmegen D	PRD15 (1977) 2547	-2.03	3.66	-1.84	3.32
Nijmegen F	PRD20 (1979) 1633	-2.40	3.15	-1.84	3.37
NSC89	PRC40 (1989) 2226	-2.86	2.91	-1.24	3.33
NSC97a		-0.77	6.09	-2.15	2.71
NSC97b		-0.97	5.09	-2.09	2.80
NSC97c	DDC50 (1000) 2000	-1.28	4.22	-2.07	2.86
NSC97d	PRC 39 (1999) 3009	-1.82	3.52	-1.94	3.01
NSC97e		-2.24	3.24	-1.83	3.14
NSC97f		-2.68	3.07	-1.67	3.34
Jülich A (ΛN)		-1.56	1.43	-1.59	3.16
Jülich A~ (ΛN)	NIDA 570 (1004) 542	-2.04	0.64	-1.33	3.91
Jülich B (ΛN)	$\left[\frac{NPA3}{0} (1994) 343 \right]$	-0.56	7.77	-1.91	2.43
Jülich B~ (ΛN)		-0.40	12.28	-2.12	2.57
Verma	PRC22 (1980) 229	-2.29	3.14	-1.77	3.25
Bhaduri (Set I, ΛN)	PR 155 (1967) 1671	-2.46	3.87	-2.07	4.50