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Motivation
• Study of nuclear force with strangeness
• Hypernuclear experiment
• Hadronic reaction
• CERN-PS, BNL-AGS, KEK-PS, DAϕNE, J-PARC

• Electro-Magnetic reaction
• JLab, MAMI

• Heavy ion reaction
• GSI, BNL-RHIC, CERN-LHC

• Hyperon-nucleon scattering 
• Λ-p at Fermi Lab, Σ-p at J-PARC
• How about hyperon-n elastic scattering?

The first observation of 
a hypernucleus. 
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How to Measure Λn Interaction

• Using FSI in γ + d reaction for K++Λ production
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FSI Effect in the K+ Cross-section
• The shape of the curves
• Enhancement in forward K +

• variations: order of 10%

• Highly accurate measurements are required
• in order to be able to distinguish among different potential models

No FSI

w/ FSI effect

investigated various new versions of the YN forces devel-
oped by the Nijmegen group !9". Only the NSC97f force
binds the hypertriton correctly. The deuteron wave function
is generated by the Nijmegen93 potential !17". The value
jmax up to which FSI had to be taken into account turned out
to be jmax!2. The results presented below are given at a
photon energy E#!1.3 GeV. In Fig. 2, we compare the in-
clusive cross sections for d(# ,K") in plane wave impulse
approximation $PWIA% with calculations that include FSI. In
order to obtain the largest cross section we have chosen &K
!0°. The two pronounced peaks around pK!945 and
809 MeV/c can be understood in PWIA. They are due to
quasifree processes, where one of the nucleons in the deu-
teron is a spectator and has zero momentum in the lab sys-
tem. This then leads to a vanishing argument q!0 in the
deuteron wave function, which causes the peaks. Under this
condition the kinematics of the #-induced process on a single
nucleon fixes the peak positions for pK in the lab system.
We see deviations between the plane wave result and the

results with FSI based on the NSC89 and NSC97f hyperon-
nucleon forces. Near the K"'N threshold FSI enhance the
cross section by up to 86%. Near the K"(N threshold the
effects are also of interest. While NSC89 has hardly any
effect, NSC97f leads to a prominent cusplike structure. The
neighborhood of the K"(N threshold is shown again en-
larged in Fig. 3. The two YN potentials lead to predictions
which differ by up to 35%. Different predictions of the two
potentials are also seen in the total elastic 'N cross section
as depicted in Fig. 4. The peak for NSC97f is significantly
higher near the (N threshold than for NSC89. As worked
out in Ref. !5", this can be traced back to the location of the
S-matrix pole for the 'N-(N system around the (N thresh-
old. We show in Fig. 5 the complex plane of the relative (N
momentum p(N . Each of the two YN potentials generates a
pole in the state 3S1– 3D1 near p(N!0. The potential
NSC89 leads to a pole position which in a single channel

case would be called a virtual state $in this case it would lie
exactly on the imaginary axis%. The coupling of the ' and (
channels moves the pole for the NSC97f force away from the
positive imaginary axis into the second p(N quadrant. In a
time-dependent description the energy related to that pole
position leads to a decreasing amplitude. In the literature,
this sort of pole is sometimes referred to as an ‘‘unstable
bound state.’’ Apparently, the actual pole position depends
on the details of the YN force. The pole positions are an
inherent property of the YN forces and the actual location
chosen by nature should be determined with the help of ex-
perimental measurements.
Another interesting insight into the inclusive cross section

is shown in Fig. 6 for the PWIA calculation. The inclusive
cross section is formed additively by the contributions for
'n , (0n , and (#p production. Above the K"(N threshold

FIG. 2. The inclusive #(d ,K") cross section as a function of lab
momenta pK for &K!0° and photon lab energy E#!1.3 GeV. The
plane wave result is compared to two YN force predictions. The FSI
effects are especially pronounced near the K"'N and K"(N
thresholds, the locations of which are indicated by the arrows.

FIG. 3. The results of Fig. 2 enlarged around the K"(N thresh-
old.

FIG. 4. The total 'N elastic cross section as a function of the '
lab momentum around the (N threshold indicated by the arrow.
The NSC97f prediction leads to a more pronounced peak structure
than the NSC89 prediction.

H. YAMAMURA et al. PHYSICAL REVIEW C 61 014001

014001-6

R.A. Adelseck and L.E. Wright, Phys. Rev C39 (1989) 580 H.Yamamura et al., Phys. Rev C61 (1999) 014001
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Preceded Experiment
• JLab Hall C E91-016
• A(e,e’K+)Λn reaction
• A = 1H, 2H, 3He, 4He

• Q2=0.35 (GeV/c)2, W = 1.91 GeV

F. DOHRMANN et al. PHYSICAL REVIEW C 76, 054004 (2007)

of Nuclear Science (LNS) at Tohoku University, Sendai, Japan
(cf. Ref. [1] for a list of references). These data include cross
sections, polarization asymmetries, tensor polarizations, and
decay angle distributions. However, the data base for photo-
production on nuclei and thus implicitly the neutron remains
sparse (cf. Refs. [2,3]). Only a few older measurements have
been reported on deuterium [4,5] and carbon [6] targets.

Traditionally, 2H and 3He targets have been considered to
be a good approximation for a free neutron target. In the
present work, as in the majority of kaon electroproduction
experiments, a positive kaon is detected in coincidence with
the scattered electron. On the proton, this leads to two possible
final states with either a ! or "0 hyperon, which are easily
separable by a missing mass analysis. On the neutron, a "− is
produced as the final state. Due to the small mass difference of
"− and "0 of 4.8 MeV/c2 and the initial nucleon momentum
distribution, the " contributions from the proton and neutron
cannot be separated by missing mass. With increasing target
mass, the separation between ! and " distributions also gets
worse because of the increasing Fermi momentum. Thus, 2H
and 3He targets offer the best access to the neutron cross
sections. Since a missing mass analysis, strictly speaking, can
only determine the total " strength, the different N/Z ratio for
the 2H and 3He targets should assist in further disentangling
the "0 and "− contributions.

Systematic studies of heavier nuclei will then provide
possibilities of investigating in-medium modifications of the
elementary kaon electroproduction mechanism as well as the
propagation of the outgoing K+; e.g., experimental data on
12C [6–9] show an effective proton number that disagrees with
theoretical calculations [10], thereby indicating the need for
modifications.

We present here the results of an experiment on the
electroproduction of open strangeness on light nuclei with A =

2, 3, 4, 12, which was performed in Hall C at Jefferson Lab.
Also measured was the production on a hydrogen target. This
facilitates direct comparison with the elementary p(e, e′K+)
reaction for identical kinematics. Results of this experiment
on the production of ! hypernuclear states, 3

!H and 4
!H, have

been presented in Ref. [11]. In this paper, we present the
cross sections for the quasifree production of !,"0, and "−.
To the best of our knowledge, this is the first reported kaon
electroproduction measurement on helium isotopes.

II. EXPERIMENT

Experiment E91-016 had two runs, one that only used
hydrogen and deuterium targets, and a subsequent one that
also included helium and carbon targets. We present cross
sections from the second run, which included data for all four
few-body nuclei. Data were obtained using electron beams of
3.245 GeV impinging on special high density cryogenic targets
of 1,2H and 3,4He. The target thicknesses were 289 mg/cm2 for
1H at 19 K, 668 mg/cm2 for 2H at 22 K, 310 mg/cm2 for 3He
at 5.5 K, and 546 mg/cm2 for 4He at 5.5 K. The target lengths
were approximately 4 cm for each target. In addition, data was
taken on a 227 mg/cm2 carbon target.

The scattered electrons were detected in the high mo-
mentum spectrometer (HMS, momentum acceptance #p/p ≈
±10%, solid angle ≈6.7 msr) in coincidence with the elec-
troproduced kaons, detected in the short orbit spectrometer
(SOS, momentum acceptance #p/p ≈ ±20%, solid angle
≈7.5 msr). The detectors and coincidence methods have been
described in detail for similar experiments in Hall C [12–14].
The detector packages of the two spectrometers are very
similar, and a sketch of the setup of the experiment is shown
in Fig. 1. Two drift chambers near the focal plane, used
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FIG. 1. (Color online) Setup of the exper-

iment (modified from Refs. [12,15]). While
the general setup was similar to other Hall C
experiments, in this experiment an additional
acrylic Čerenkov detector was used for better
K+/p discrimination.
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FIG. 6. (Color online) Effects of including FSI for the fits to the
data on 2H (upper panel) and 3He (lower panel) in the low-mass !

region. The fitted ! contribution without FSI is given by the dark
color, dash-dotted line. ! contributions including FSI are given by
the light-blue, dashed line. For 3He, the 3

!H bound state is shown in
red. The total fit (sum of all contributions) is given by the dotted line.
Vertical dot-dashed lines are as in Fig. 4.

The following describes the extraction of the cross section.
For the 1H(e, e′K+) data, we fit the missing mass spectra Mdata

with the ansatz

Mdata(H) = fH,!Mmodel
! (H) + fH,"0Mmodel

"0 (H), (20)

with two free fit parameters fH,! and fH,"0 for the simulated
missing mass distributions Mmodel

!,"0 . Once these two parameters
are obtained, the cross section in the laboratory may be ob-
tained by evaluating the model cross section for the simulation
at the specific kinematic conditions of the experiment, as stated
above. These two model cross sections are then multiplied by
the respective fit parameters obtained in Eq. (20). Moreover,
we define the important ratio of the fit parameters

R!"0 = fH,!

fH,"0
. (21)

For targets with A ! 2, Eq. (20) has to be modified to
incorporate the possible conversion of a target neutron into
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FIG. 7. (Color online) Reconstructed missing mass spectra for six
targets at one kinematic setting (〈1.7

◦ 〉). Simulated quasifree reactions
A(e, e′K+)Y are indicated by colors: Y = ! (light blue), Y = "0

(blue), Y = "− (green), bound states 3
!H, 4

!H, 12
! B (red), and sum of

all simulated contributions (yellow). Vertical dot-dashed lines are as
in Fig. 4.

a "− hyperon as follows:

Mdata(A) = fA,!Mmodel
! (A) + fA,"0Mmodel

"0 (A)

+ fA,"−Mmodel
"− (A). (22)

Here the simulated missing mass distributions Mmodel
Y (A), Y =

!,"0,"− include both the respective model cross section and
the respective enhancement factors IY (A) due to the final state
interaction. The respective cross sections are given by

σY (A) = fA,Y IY (A)σ model
Y (A). (23)

In the following, if not explicitly stated otherwise, it is assumed
that the model cross section σ model

Y (A) themselves do not
include the final state interaction. Enhancements of the model
cross sections due to the final state interaction are described
by enhancement factors IY (A).

Equation (22) poses a fitting problem with three free fit
parameters fY (A) for which this experiment is not able to
distinguish directly the contributions of either " hyperon. Thus
for targets with A ! 2, it is assumed that this ratio (21) is the
same for the bound protons in the respective nucleus, i.e.,

R!"0 = fH,!

fH,"0
= fA,!

fA,"0
, fA,"0 = fA,!

R!"0 (H)
. (24)
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Abstract. The missing-mass spectrum measured in high-resolution studies of the reaction pp → K+X is
analyzed with respect to the strong final-state interaction near the Λp production threshold. The observed
spectrum can be described by factorizing the reaction amplitude in terms of a production amplitude and
a final-state scattering amplitude. Parametrizing the Λp final-state interaction in terms of the inverse Jost
function allows a direct extraction of the low-energy phase-equivalent potential parameters. Constraints on
the singlet and triplet scattering lengths and effective ranges are deduced in a simultaneous fit of the Λp
invariant-mass spectrum and the total-cross-section data of the free Λp scattering using the effective-range
approximation.

PACS. 13.75.Ev Hyperon-nucleon interactions – 21.30.Fe Forces in hadronic systems and effective inter-
actions – 24.10.-i Nuclear reaction models and methods – 25.40.-h Nucleon-induced reactions

1 Introduction

Experimental information on the Λp interaction has been
derived from the analysis of hypernuclei, Λp scattering
experiments and studies of the Λp final-state interaction
(FSI) in strangeness transfer reactions. The binding en-
ergy of light hypernuclei shows that the low-energy Λp
interaction is attractive. In addition, the Λp interaction
is spin-dependent and the singlet interaction is stronger
than the triplet one [1–3]. The free Λp scattering was
studied in bubble chamber measurements [4–6]. In the
low-momentum region the elastic cross-sections were ana-
lyzed in terms of the S-wave singlet and triplet scattering
lengths and effective ranges. However, these determina-
tions are characterized by large variances and covariances
since the data only support the determination of a spin-
averaged scattering length and effective range [6].

The strong effect due to the Λp FSI was observed in
strangeness transfer reactions [7–9] and and in associated
strangeness production reactions [10–16]. The Λp produc-
tion in the K−d → π−Λp, π+d → K+Λp, γd → K0Λp and
pp → K+Λp reactions can provide substantial improve-
ment in an evaluation of the low-energy Λp scattering.

a e-mail: fh@iskp.uni-bonn.de

Intensive theoretical studies of the hyperon-nucleon in-
teraction with the Nijmegen [17–20] and Jülich [21–23]
potential models predict the hyperon-nucleon potentials
and phase shift parameters. These models also predict the
singlet and triplet scattering length and effective-range pa-
rameters of the free S-wave Λp interaction.

The present paper refers to the associated strangeness
reaction pp → K+(Λp) which is characterized by a strong
FSI near the Λp production threshold. In most experi-
ments the Λp system was measured inclusively. Exclusive
measurements of the pp → K+Λp reaction were performed
at COSY [14,15] and SATURNE [16]. Theoretical analy-
ses of the reactions were done [24–37] by applying the me-
son exchange model and including the Λp FSI generally
modelled by Nijmegen or Jülich potentials.

The aim of the present paper is to perform an analysis
of the Λp FSI in the reaction pp → K+(Λp) and an eval-
uation of the Λp low-energy interaction parameters. Us-
ing the Watson-Migdal approximation [38–41] the reaction
amplitude is factorized in terms of a production matrix
element and a FSI enhancement factor, which can be rep-
resented by the inverse Jost function [42–45]. We analyze
experimental results from SATURNE collected by Siebert
et al. [13], which are characterized by a high statistical
accuracy and a high invariant-mass resolution. Further-
more, in the fitting procedure the missing-mass resolution

314 The European Physical Journal A

is taken into account by folding the theoretical expressions
with the experimental resolution function.

The analysis shows that the shape of the sharply rising
invariant-mass spectrum depends strongly on the singlet
and triplet scattering length and effective-range param-
eters. But only two parameters, the spin-averaged scat-
tering length and effective-range parameters, can be de-
duced within an acceptable confidence level by fitting the
Λp missing-mass spectrum. Additional information can
be obtained by taking the total-cross-section data for the
free Λp scattering into account and including these data
in an overall fit. At low energies the total cross-section
can be described in a model-independent way using the
effective-range approximation [46–48]. Thus, by fitting si-
multaneously the Λp invariant-mass spectrum and the
available total cross-section data of the free Λp scatter-
ing severe constraints on the singlet and triplet scatter-
ing length and effective-range parameters can be deduced.
This method allows also to test theoretical model predic-
tions.

2 The formalism

2.1 Phase space distribution

The pp → K+Λp double differential cross-section is given
as

d2σ

dΩKdMΛp
= |M̃|2 Φ3, (1)

where M̃ is the Lorentz-invariant reaction amplitude and
the three-body phase space distribution function is

Φ3=
π

16(2π)5
p2

Kq

ppmp[(Ep + mp)pK − EKpp cos θK ]
, (2)

where q is the momentum of Λ in the Gottfried-
Jackson rest-frame of the produced two-particle subsys-
tem X = Λ + p, MΛp is the corresponding invariant mass
and pp, Ep, pK , EK , θK , ΩK are defined in the laboratory
system. Obviously, in inclusive measurements the invari-
ant mass MΛp is equal to the missing mass MX below the
Σ-hyperon production threshold. Equation (2) is consis-
tent with the kinematical definitions of refs. [49,50].

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is
taken into account by introducing a FSI enhancement fac-
tor |CFSI|2,

d2σ

dΩKdMΛp
= |M|2 |CFSI|2 Φ3, (3)

where now M is a pure production matrix element and the
FSI amplitude CFSI depends on the internal momentum q
of the Λp subsystem. It converges to 1 for q → ∞ where
the S-wave FSI enhancement vanishes.

Applying the factorization we assume that the produc-
tion operator M is constant, i.e. does not depend on the
internal kinetic energy of the Λp subsystem. In case of the
pp → K+Λp reaction this assumption is supported by the
kinematics which provides a focus onto the Λp FSI. The
internal kinetic energy of the Λp subsystem is almost zero
near the Λp threshold, whereas the K+Λ and K+p sub-
systems have large internal kinetic energies. Even if the
pp → K+Λp reaction is dominated [29–32] by interme-
diate baryonic resonances coupled to the K+Λ system a
small variation of the invariant Λp mass does practically
not affect the production amplitude.

The methods for studying the FSI between the par-
ticles have been developed in different areas of physics,
ranging from atomic physics to high-energy particle
physics [41]. Taking the inverse Jost function [42,43] the
correction due to the FSI is given as

CFSI =
q − iβ

q + iα
, |CFSI|2 =

q2 + β2

q2 + α2
. (4)

The potential parameters α and β can be used to establish
phase-equivalent Bargmann potentials [44,45]. They are
related to the scattering lengths a, and effective ranges r
of the low-energy S-wave scattering

α =
1
r

(

1 −
√

1 − 2
r

a

)

, β =
1
r

(

1 +
√

1 − 2
r

a

)

. (5)

The Λp system can couple to singlet 1S0 and triplet
3S1 states. Near production threshold the singlet-triplet
transitions due to the final-state interaction cannot oc-
cur. Therefore, the contributions of the spin-singlet and
spin-triplet final states can be added incoherently. Taking
the spin-statistical weights into account the unpolarized
double differential cross-section may be written as

d2σ

dΩKdMΛp
= Φ3

[

0.25 |Ms|2
q2 + β2

s

q2 + α2
s

+ 0.75 |Mt|2
q2 + β2

t

q2 + α2
t

]

. (6)

This equation leaves six free parameters, the singlet and
triplet potential parameters αs, βs, αt, βt and the pro-
duction matrix elements |Ms| and |Mt|. Instead of the
parameters αs, βs, αt and βt one can equally well use the
singlet and triplet scattering length and effective-range
parameters as, rs, at and rt. The functional dependence
on the invariant mass MΛp can be evaluated by inserting
the corresponding expression for the internal momentum
q of the Λp system,

q =

√

M2
Λp − (mΛ + mp)2

√

M2
Λp − (mΛ − mp)2

2MΛp
. (7)

2.3 Missing-mass resolution

The theoretical missing-mass spectrum of eq. (6) has to
be folded with the missing-mass resolution function before
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is taken into account by folding the theoretical expressions
with the experimental resolution function.

The analysis shows that the shape of the sharply rising
invariant-mass spectrum depends strongly on the singlet
and triplet scattering length and effective-range param-
eters. But only two parameters, the spin-averaged scat-
tering length and effective-range parameters, can be de-
duced within an acceptable confidence level by fitting the
Λp missing-mass spectrum. Additional information can
be obtained by taking the total-cross-section data for the
free Λp scattering into account and including these data
in an overall fit. At low energies the total cross-section
can be described in a model-independent way using the
effective-range approximation [46–48]. Thus, by fitting si-
multaneously the Λp invariant-mass spectrum and the
available total cross-section data of the free Λp scatter-
ing severe constraints on the singlet and triplet scatter-
ing length and effective-range parameters can be deduced.
This method allows also to test theoretical model predic-
tions.

2 The formalism

2.1 Phase space distribution

The pp → K+Λp double differential cross-section is given
as

d2σ

dΩKdMΛp
= |M̃|2 Φ3, (1)

where M̃ is the Lorentz-invariant reaction amplitude and
the three-body phase space distribution function is

Φ3=
π

16(2π)5
p2

Kq

ppmp[(Ep + mp)pK − EKpp cos θK ]
, (2)

where q is the momentum of Λ in the Gottfried-
Jackson rest-frame of the produced two-particle subsys-
tem X = Λ + p, MΛp is the corresponding invariant mass
and pp, Ep, pK , EK , θK , ΩK are defined in the laboratory
system. Obviously, in inclusive measurements the invari-
ant mass MΛp is equal to the missing mass MX below the
Σ-hyperon production threshold. Equation (2) is consis-
tent with the kinematical definitions of refs. [49,50].

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is
taken into account by introducing a FSI enhancement fac-
tor |CFSI|2,

d2σ

dΩKdMΛp
= |M|2 |CFSI|2 Φ3, (3)

where now M is a pure production matrix element and the
FSI amplitude CFSI depends on the internal momentum q
of the Λp subsystem. It converges to 1 for q → ∞ where
the S-wave FSI enhancement vanishes.

Applying the factorization we assume that the produc-
tion operator M is constant, i.e. does not depend on the
internal kinetic energy of the Λp subsystem. In case of the
pp → K+Λp reaction this assumption is supported by the
kinematics which provides a focus onto the Λp FSI. The
internal kinetic energy of the Λp subsystem is almost zero
near the Λp threshold, whereas the K+Λ and K+p sub-
systems have large internal kinetic energies. Even if the
pp → K+Λp reaction is dominated [29–32] by interme-
diate baryonic resonances coupled to the K+Λ system a
small variation of the invariant Λp mass does practically
not affect the production amplitude.

The methods for studying the FSI between the par-
ticles have been developed in different areas of physics,
ranging from atomic physics to high-energy particle
physics [41]. Taking the inverse Jost function [42,43] the
correction due to the FSI is given as

CFSI =
q − iβ

q + iα
, |CFSI|2 =

q2 + β2

q2 + α2
. (4)

The potential parameters α and β can be used to establish
phase-equivalent Bargmann potentials [44,45]. They are
related to the scattering lengths a, and effective ranges r
of the low-energy S-wave scattering

α =
1
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r
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, β =
1
r
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. (5)

The Λp system can couple to singlet 1S0 and triplet
3S1 states. Near production threshold the singlet-triplet
transitions due to the final-state interaction cannot oc-
cur. Therefore, the contributions of the spin-singlet and
spin-triplet final states can be added incoherently. Taking
the spin-statistical weights into account the unpolarized
double differential cross-section may be written as
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This equation leaves six free parameters, the singlet and
triplet potential parameters αs, βs, αt, βt and the pro-
duction matrix elements |Ms| and |Mt|. Instead of the
parameters αs, βs, αt and βt one can equally well use the
singlet and triplet scattering length and effective-range
parameters as, rs, at and rt. The functional dependence
on the invariant mass MΛp can be evaluated by inserting
the corresponding expression for the internal momentum
q of the Λp system,

q =
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2.3 Missing-mass resolution

The theoretical missing-mass spectrum of eq. (6) has to
be folded with the missing-mass resolution function before
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is taken into account by folding the theoretical expressions
with the experimental resolution function.
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in an overall fit. At low energies the total cross-section
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effective-range approximation [46–48]. Thus, by fitting si-
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This equation leaves six free parameters, the singlet and
triplet potential parameters αs, βs, αt, βt and the pro-
duction matrix elements |Ms| and |Mt|. Instead of the
parameters αs, βs, αt and βt one can equally well use the
singlet and triplet scattering length and effective-range
parameters as, rs, at and rt. The functional dependence
on the invariant mass MΛp can be evaluated by inserting
the corresponding expression for the internal momentum
q of the Λp system,
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2.3 Missing-mass resolution

The theoretical missing-mass spectrum of eq. (6) has to
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Table 1. Five-parameter fit results for as, rs, at, rt and |Ms|2 and different ratios |Mt|2/|Ms|2 of the triplet and singlet
production matrix elements.

|Mt|2/|Ms|2 |Ms|2 (b/sr) as (fm) rs (fm) at (fm) rt (fm) χ2 χ2/n.d.f.

0.00 61.4+5.9
−6.3 −2.6+0.2

−0.2 2.47+0.23
−0.24 −1.5+0.2

−0.3 3.6+0.9
−0.9 29.0 0.805

0.10 46.7+4.2
−4.5 −2.7+0.3

−0.4 2.25+0.23
−0.24 −1.5+0.3

−0.3 3.8+1.0
−1.0 29.0 0.807

0.25 34.4+3.0
−3.2 −2.9+0.3

−0.5 1.97+0.22
−0.23 −1.4+0.3

−0.4 4.0+1.1
−1.2 29.1 0.809

0.50 24.0+2.1
−2.3 −3.1+0.4

−0.6 1.63+0.18
−0.19 −1.3+0.4

−0.4 4.5+1.3
−1.3 29.2 0.812

1.00 15.0+1.4
−1.6 −3.2+0.4

−0.6 1.25+0.13
−0.15 −1.3+0.4

−0.5 5.4+1.6
−1. 29.4 0.816

2.00 8.7+0.8
−1.0 −3.3+0.4

−0.6 0.90+0.09
−0.10 −1.2+0.5

−0.6 6.5+2.0
−2.1 29.6 0.821

4.00 4.7+0.4
−0.5 −3.3+0.4

−0.6 0.63+0.06
−0.07 −1.2+0.5

−0.8 7.8+2.7
−2.7 29.8 0.827

8.00 2.4+0.2
−0.2 −3.4+0.4

−0.6 0.44+0.04
−0.05 −1.2+0.6

−1.0 9.2+3.5
−3.5 29.9 0.832

Fig. 4. Same as in fig. 1. Solid lines: Fit curves with param-
eters given by eq. (15) from a combined five-parameter fit of
the missing-mass spectrum and the total-cross-section data,
dashed line: phase space distribution, dotted lines: singlet con-
tributions, dash-dotted lines: triplet contributions.

Vice versa, we take only the total-cross-section data
into account and determine ā and r̄ in a two-parameter
fit. The resulting fit parameters are

ā = −1.81+0.18
−0.21 fm, r̄ = 3.24+0.48

−0.48 fm, χ2/n.d.f. = 0.39.
(12)

Taking those parameters fixed and fitting only |M̄|2 yields
for the missing-mass spectrum

|M̄|2 = 19.5+0.2
−0.2 b/sr, χ2/n.d.f. = 3.7. (13)

This procedure yields an excellent fit of the total-
cross-section data but fails completely to describe the
missing-mass spectrum (see fig. 2).

In a next step, we determine spin-averaged parame-
ters in a combined fit, i.e. by fitting simultaneously the
missing-mass spectrum and the total-cross-section data.
The resulting parameters are

|M̄|2 = 16.9+1.2
−1.2 b/sr, χ2/n.d.f. = 2.2,

ā = −1.91+0.10
−0.11 fm, r̄ = 2.74+0.20

−0.20 fm. (14)

This procedure fails to describe both the missing-mass
spectrum and the total-cross-section data (see fig. 3). This
failure is a direct indication that the spin dependence of
the Λp interaction must be taken into account.

3.2 Five-parameter fit

Now the data on the total Λp cross-section and pp →
K+X missing-mass spectrum are fitted in a combined fit
with the singlet and triplet scattering lengths and effective
ranges as, rs, at, rt as separate free parameters. Taking
the unknown quantities |Ms|2 and |Mt|2 into account a
six-parameter fit should be performed. However, it turned
out that the χ2 criterion cannot be used to determine si-
multaneously |Ms|2 and |Mt|2. This is due to the fact
that the resulting χ2 depends only weakly on the ratio
|Mt|2/|Ms|2 as is indicated in table 1. Therefore, five-
parameter fits were performed taking |Ms|2 as free pa-
rameter and the ratio |Mt|2/|Ms|2 as fixed parameter.
By this method valuable constraints on the singlet and
triplet scattering lengths and effective ranges can be de-
duced from the data.
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is taken into account by folding the theoretical expressions
with the experimental resolution function.

The analysis shows that the shape of the sharply rising
invariant-mass spectrum depends strongly on the singlet
and triplet scattering length and effective-range param-
eters. But only two parameters, the spin-averaged scat-
tering length and effective-range parameters, can be de-
duced within an acceptable confidence level by fitting the
Λp missing-mass spectrum. Additional information can
be obtained by taking the total-cross-section data for the
free Λp scattering into account and including these data
in an overall fit. At low energies the total cross-section
can be described in a model-independent way using the
effective-range approximation [46–48]. Thus, by fitting si-
multaneously the Λp invariant-mass spectrum and the
available total cross-section data of the free Λp scatter-
ing severe constraints on the singlet and triplet scatter-
ing length and effective-range parameters can be deduced.
This method allows also to test theoretical model predic-
tions.

2 The formalism

2.1 Phase space distribution

The pp → K+Λp double differential cross-section is given
as

d2σ

dΩKdMΛp
= |M̃|2 Φ3, (1)

where M̃ is the Lorentz-invariant reaction amplitude and
the three-body phase space distribution function is

Φ3=
π

16(2π)5
p2

Kq

ppmp[(Ep + mp)pK − EKpp cos θK ]
, (2)

where q is the momentum of Λ in the Gottfried-
Jackson rest-frame of the produced two-particle subsys-
tem X = Λ + p, MΛp is the corresponding invariant mass
and pp, Ep, pK , EK , θK , ΩK are defined in the laboratory
system. Obviously, in inclusive measurements the invari-
ant mass MΛp is equal to the missing mass MX below the
Σ-hyperon production threshold. Equation (2) is consis-
tent with the kinematical definitions of refs. [49,50].

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is
taken into account by introducing a FSI enhancement fac-
tor |CFSI|2,

d2σ

dΩKdMΛp
= |M|2 |CFSI|2 Φ3, (3)

where now M is a pure production matrix element and the
FSI amplitude CFSI depends on the internal momentum q
of the Λp subsystem. It converges to 1 for q → ∞ where
the S-wave FSI enhancement vanishes.

Applying the factorization we assume that the produc-
tion operator M is constant, i.e. does not depend on the
internal kinetic energy of the Λp subsystem. In case of the
pp → K+Λp reaction this assumption is supported by the
kinematics which provides a focus onto the Λp FSI. The
internal kinetic energy of the Λp subsystem is almost zero
near the Λp threshold, whereas the K+Λ and K+p sub-
systems have large internal kinetic energies. Even if the
pp → K+Λp reaction is dominated [29–32] by interme-
diate baryonic resonances coupled to the K+Λ system a
small variation of the invariant Λp mass does practically
not affect the production amplitude.

The methods for studying the FSI between the par-
ticles have been developed in different areas of physics,
ranging from atomic physics to high-energy particle
physics [41]. Taking the inverse Jost function [42,43] the
correction due to the FSI is given as

CFSI =
q − iβ

q + iα
, |CFSI|2 =

q2 + β2

q2 + α2
. (4)

The potential parameters α and β can be used to establish
phase-equivalent Bargmann potentials [44,45]. They are
related to the scattering lengths a, and effective ranges r
of the low-energy S-wave scattering

α =
1
r

(

1 −
√

1 − 2
r

a

)

, β =
1
r

(

1 +
√

1 − 2
r

a

)

. (5)

The Λp system can couple to singlet 1S0 and triplet
3S1 states. Near production threshold the singlet-triplet
transitions due to the final-state interaction cannot oc-
cur. Therefore, the contributions of the spin-singlet and
spin-triplet final states can be added incoherently. Taking
the spin-statistical weights into account the unpolarized
double differential cross-section may be written as

d2σ

dΩKdMΛp
= Φ3

[

0.25 |Ms|2
q2 + β2

s

q2 + α2
s

+ 0.75 |Mt|2
q2 + β2

t

q2 + α2
t

]

. (6)

This equation leaves six free parameters, the singlet and
triplet potential parameters αs, βs, αt, βt and the pro-
duction matrix elements |Ms| and |Mt|. Instead of the
parameters αs, βs, αt and βt one can equally well use the
singlet and triplet scattering length and effective-range
parameters as, rs, at and rt. The functional dependence
on the invariant mass MΛp can be evaluated by inserting
the corresponding expression for the internal momentum
q of the Λp system,

q =

√

M2
Λp − (mΛ + mp)2

√

M2
Λp − (mΛ − mp)2

2MΛp
. (7)

2.3 Missing-mass resolution

The theoretical missing-mass spectrum of eq. (6) has to
be folded with the missing-mass resolution function before

314 The European Physical Journal A

is taken into account by folding the theoretical expressions
with the experimental resolution function.

The analysis shows that the shape of the sharply rising
invariant-mass spectrum depends strongly on the singlet
and triplet scattering length and effective-range param-
eters. But only two parameters, the spin-averaged scat-
tering length and effective-range parameters, can be de-
duced within an acceptable confidence level by fitting the
Λp missing-mass spectrum. Additional information can
be obtained by taking the total-cross-section data for the
free Λp scattering into account and including these data
in an overall fit. At low energies the total cross-section
can be described in a model-independent way using the
effective-range approximation [46–48]. Thus, by fitting si-
multaneously the Λp invariant-mass spectrum and the
available total cross-section data of the free Λp scatter-
ing severe constraints on the singlet and triplet scatter-
ing length and effective-range parameters can be deduced.
This method allows also to test theoretical model predic-
tions.

2 The formalism
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The pp → K+Λp double differential cross-section is given
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where q is the momentum of Λ in the Gottfried-
Jackson rest-frame of the produced two-particle subsys-
tem X = Λ + p, MΛp is the corresponding invariant mass
and pp, Ep, pK , EK , θK , ΩK are defined in the laboratory
system. Obviously, in inclusive measurements the invari-
ant mass MΛp is equal to the missing mass MX below the
Σ-hyperon production threshold. Equation (2) is consis-
tent with the kinematical definitions of refs. [49,50].

2.2 Final-state interaction

In the Watson-Migdal approximation [38–40] the FSI is
taken into account by introducing a FSI enhancement fac-
tor |CFSI|2,
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= |M|2 |CFSI|2 Φ3, (3)

where now M is a pure production matrix element and the
FSI amplitude CFSI depends on the internal momentum q
of the Λp subsystem. It converges to 1 for q → ∞ where
the S-wave FSI enhancement vanishes.

Applying the factorization we assume that the produc-
tion operator M is constant, i.e. does not depend on the
internal kinetic energy of the Λp subsystem. In case of the
pp → K+Λp reaction this assumption is supported by the
kinematics which provides a focus onto the Λp FSI. The
internal kinetic energy of the Λp subsystem is almost zero
near the Λp threshold, whereas the K+Λ and K+p sub-
systems have large internal kinetic energies. Even if the
pp → K+Λp reaction is dominated [29–32] by interme-
diate baryonic resonances coupled to the K+Λ system a
small variation of the invariant Λp mass does practically
not affect the production amplitude.

The methods for studying the FSI between the par-
ticles have been developed in different areas of physics,
ranging from atomic physics to high-energy particle
physics [41]. Taking the inverse Jost function [42,43] the
correction due to the FSI is given as
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3S1 states. Near production threshold the singlet-triplet
transitions due to the final-state interaction cannot oc-
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duction matrix elements |Ms| and |Mt|. Instead of the
parameters αs, βs, αt and βt one can equally well use the
singlet and triplet scattering length and effective-range
parameters as, rs, at and rt. The functional dependence
on the invariant mass MΛp can be evaluated by inserting
the corresponding expression for the internal momentum
q of the Λp system,
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M2
Λp − (mΛ − mp)2

2MΛp
. (7)

2.3 Missing-mass resolution

The theoretical missing-mass spectrum of eq. (6) has to
be folded with the missing-mass resolution function before
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NKS2 Experiment

(The recent results will be shown 
in Parallel 2b by H. Kanda)



Photon Beam Line
in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

 Stretcher- Booster
 (STB)  Ring

    Max Ee = 1.2 GeV

After repairing

     Max Ee = 1.3 GeV

Sweep

magnet

NKS2

2nd experimental hall in ELPH
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Photon Beam Line
in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

 Stretcher- Booster
 (STB)  Ring

    Max Ee = 1.2 GeV

After repairing

     Max Ee = 1.3 GeV

Sweep

magnet

NKS2

TagB

TagF

Scattered electron
Ee’ = 1/3 - 1/12 of Ee

Orbit
Electron

Photon

B 

Tagged Photon Rate: 1-3 MHz
Duty Factor: ~85%

2nd experimental hall in ELPH

9



The NKS2 Experiment

1.6 m

1 m

•Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

•Liquid D2 or H2 target
•Magnetic spectrometer
• Tracker 

• Two drift chambers
• Charged particle momentum, trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with momentum

• Electron Veto

•Acceptance
• Covering large kinematic region including forward angle

10



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



The NKS2 Experiment
• Tagged photon beam
• E𝛾 = 0.80-1.08 GeV

• Liquid D2 or H2 target
• Magnetic spectrometer
• Tracker 
• Two drift chambers
• Charged particle momentum, 

trajectory, and decay vertex

• Hodoscopes
• Plastic scintillator + PMT
• Time-Of-Flight (TOF)
• Particle identification combined with 

momentum

• Electron Veto

• Acceptance
• Covering large kinematic region 

including forward angle

Pho
ton

 be
am

0.42 T
Dipole
Magnet

11



Particle Identification
M

om
en

tu
m

 ×
 c

ha
rg

e 
si

gn
 [G

eV
/c

]

Inverse velocity (1/β) [c-1]

12



Particle Identification
M

om
en

tu
m

 ×
 c

ha
rg

e 
si

gn
 [G

eV
/c

]

Inverse velocity (1/β) [c-1]

Mass squared [GeV4/c2]

C
ou

nt
s

12



Feasibility in NKS2



Feasibility Study by a Simulation

• FSI affects to cross section
• Using effective range approximation
• Large in low relative momentum region
• How looks like in K and Λ distribution (p and θ)?

• Acceptance 
• K+ single, and K++Λ coincidence

• Study by a Monte-Carlo simulation
• GEANT4 based
• γ + d → K+ +Λ + n
• Kaon-MAID: γ + p → K+ Λ
• Applying the effect of Fermi motion inside of deuteron

• New K+ ID detector
• same acceptance with current outer hodoscopes
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 K+ angle vs. K+ momentum

2 or more tracks
required
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K+ Single Measurement (MC studied)

• 2 track trigger requested
• Geometrical acceptance for K+: 
• ~20-30% (varied by relative momentum)
• note: ~1-2 % for K++Λ

• If requesting of < 3% error
• in each 100 MeV step of Eγ bin
• total number of K+ event: ~50000 

Enhancement factor:
effective range approximation
for Λn FSI  (S-wave, low energy)
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K+ Single Measurement (MC studied)

• 2 track trigger requested
• Geometrical acceptance for K+: 
• ~20-30% (varied by relative momentum)
• note: ~1-2 % for K++Λ

• If requesting of < 3% error
• in each 100 MeV step of Eγ bin
• total number of K+ event: ~50000 
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Enhancement factor:
effective range approximation
for Λn FSI  (S-wave, low energy)
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K+ Single Measurement (MC studied)

• 2 track trigger requested
• Geometrical acceptance for K+: 
• ~20-30% (varied by relative momentum)
• note: ~1-2 % for K++Λ

• If requesting of < 3% error
• in each 100 MeV step of Eγ bin
• total number of K+ event: ~50000 
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Eγ = 800-900 [MeV] Eγ = 1200-1300 [MeV]

Enhancement factor:
effective range approximation
for Λn FSI  (S-wave, low energy)

Beam time estimated: ~150 days
for each D2 and H2 target 

It is realistic in ELPH
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Summary
• Λn interaction via FSI effect 
• γ + d → K+ + Λ + n and  γ + p → K+ + Λ

• NKS2 experiment
• NKS2 spectrometer covers forward angle region
• Liquid Deuterium and Hydrogen target
• Strangeness photo-production near the threshold

• Feasibility of measurements of the Λn interaction
• Studied by the MC simulation based on GEANT4
• K+ single measurement
• ~20-30% geometrical acceptance (for Λn relative momentum <300 MeV/c)

• ~150 days of beam time for 50000 event 

• K+ Λ coincidence measurement
• ~1-3% geometrical acceptance (for Λn relative  momentum <300 MeV/c)

•Capability of the complete measurement of kinematics

•Λ recoil polarization may give us more information

•need helps of theoretical study

•single/triplet separation?17
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Table 2. Test of potential model results performed with two-parameter fit.

Model as (fm) rs (fm) at (fm) rt (fm) |Ms|2 (b/sr) |Mt|2 (b/sr) χ2 χ2/n.d.f.

Nijm a −0.71 5.86 −2.18 2.76 0. ± 0.1 22.8 ± 0.2 47.6 1.22
Nijm b −0.90 4.92 −2.13 2.84 0. ± 0.1 23.4 ± 0.2 53.9 1.38
Nijm c −1.20 4.11 −2.08 2.92 0. ± 0.1 23.9 ± 0.2 62.2 1.60
Nijm d −1.71 3.46 −1.95 3.08 0. ± 0.1 25.0 ± 0.2 83.3 2.14
Nijm e −2.10 3.19 −1.86 3.19 77.5 ± 0.7 0. ± 0.1 76.6 1.97
Nijm f −2.51 3.03 −1.75 3.32 74.7 ± 0.7 0. ± 0.1 44.8 1.15
Jül Ã −2.04 0.64 −1.33 3.91 7.3 ± 0.5 7.8 ± 1.6 55.9 1.43
Jül B̃ −0.40 12.28 −2.12 2.57 0. ± 0.1 21.3 ± 0.2 43.6 1.12
Jül A −1.56 1.43 −1.59 3.16 33.8 ± 0.3 0. ± 0.1 80.2 2.06
Jül B −0.56 7.77 −1.91 2.43 0. ± 0.1 20.1 ± 0.2 55.5 1.42
NSC −2.78 2.88 −1.41 3.11 71.6 ± 0.7 0. ± 0.1 32.8 0.84
Nijm D −1.90 3.72 −1.96 3.24 0. ± 0.2 26.1 ± 0.2 91.6 2.35
Nijm F −2.29 3.17 −1.88 3.36 77.4 ± 0.7 0. ± 0.1 62.6 1.61
Jül 03 −1.02 4.49 −1.89 2.57 0. ± 0.1 21.3 ± 0.2 62.4 1.60

Fig. 5. The singlet (circles) and triplet (squares) scatter-
ing lengths and effective ranges as a function of the ratio
|Mt|2/|Ms|2 resulting from the overall five-parameter fit to the
total Λp cross-section and missing-mass spectrum measured in
the pp → K+X reaction.

It should be mentioned that the spin-statistical weights
0.25 and 0.75 of the singlet and triplet contributions
have already been taken into account in the theoreti-
cal ansatz (6). Therefore the five-parameter search was
started with the constraint |Mt|2/|Ms|2 = 1 yielding a
solution with χ2/n.d.f. = 0.82. The resulting parameters
are

|Ms|2 = 15.0+1.4
−1.6 b/sr, χ2/n.d.f. = 0.82,

as = −3.2+0.4
−0.6 fm, rs = 1.25+0.13

−0.15 fm,

at = −1.3+0.4
−0.5 fm, rt = 5.4+1.6

−1.6 fm. (15)

Both the missing-mass spectrum and the total-cross-
section data (see fig. 4) are perfectly reproduced. Then,
the ratio |Mt|2/|Ms|2 was varied over a wide range
of values and best-fit solutions of similar quality with
χ2/n.d.f. varying between 0.80 and 0.83 were found. The
resulting fit parameters are listed in table 1 for 0 ≤
|Mt|2/|Ms|2 ≤ 8.

A characteristic feature of the best-fit solutions is the
fact that the singlet FSI enhancement factor at q = 0
is much larger than the triplet one, e.g. β2

s/α2
s = 49.1

and β2
t /α2

t = 3.9 for |Mt|2/|Ms|2 = 1. In spite of
the statistical weight 0.25 the singlet contribution dom-
inates the pp → K+Λp cross-section at q = 0, e.g.
0.25|Ms|2β2

s/α2
s = 183 b/sr and 0.75|Mt|2β2

t /α2
t =

43.5 b/sr for |Mt|2/|Ms|2 = 1. Solutions where the triplet
contribution is larger than the singlet contribution do
not fit the FSI enhancement of the missing-mass spec-
trum near q = 0 and can be excluded on the basis of the
χ2 criterion. This holds true even if one varies the ratio
|Mt|2/|Ms|2 in a wide range.

The resulting best-fit parameters are shown in fig. 5
as a function of the ratio |Mt|2/|Ms|2. The variation of
the ratio |Mt|2/|Ms|2 causes rather small variations of
the parameters as, at and rather large variations of the
parameters rs, rt, respectively. Therefore one can deduce
important constraints on the singlet and triplet scattering
lengths and effective ranges of the low-energy Λp interac-
tion:

−4.1 fm < as < −2.3 fm, rs < 2.7 fm,

−1.8 fm < at < −0.6 fm, rt > 2.7 fm. (16)

4 Tests of potential model results

Available meson exchange potential model predictions
of the S-wave Λp singlet and triplet scattering length
and effective-range parameters are listed in table 2. Here
the results from the Nijmegen model are denoted as
Nijm D [17], Nijm F [18] and Nijm a-f [20]. The NSC

EPJ A21 (2004) 313
Production matrix elements of Λp Singlet and Triplet state are varied by model



Effective Range and Scattering Length for 
Λn interaction

Refs. as [fm] rs [fm] at [fm] rt [fm]
Nijmegen D PRD15 (1977) 2547 -2.03 3.66 -1.84 3.32
Nijmegen F PRD20 (1979) 1633 -2.40 3.15 -1.84 3.37

NSC89 PRC40 (1989) 2226 -2.86 2.91 -1.24 3.33
NSC97a

PRC59 (1999) 3009

-0.77 6.09 -2.15 2.71
NSC97b

PRC59 (1999) 3009

-0.97 5.09 -2.09 2.80
NSC97c

PRC59 (1999) 3009
-1.28 4.22 -2.07 2.86

NSC97d
PRC59 (1999) 3009

-1.82 3.52 -1.94 3.01
NSC97e

PRC59 (1999) 3009

-2.24 3.24 -1.83 3.14
NSC97f

PRC59 (1999) 3009

-2.68 3.07 -1.67 3.34
Jülich A (ΛN)

NPA570 (1994) 543

-1.56 1.43 -1.59 3.16
Jülich A~ (ΛN)

NPA570 (1994) 543
-2.04 0.64 -1.33 3.91

Jülich B (ΛN)
NPA570 (1994) 543

-0.56 7.77 -1.91 2.43
Jülich B~ (ΛN)

NPA570 (1994) 543

-0.40 12.28 -2.12 2.57
Verma PRC22 (1980) 229 -2.29 3.14 -1.77 3.25

Bhaduri (Set I, ΛN) PR 155 (1967) 1671 -2.46 3.87 -2.07 4.50




