Charmed Baryons and Their Interactions

Atsushi Hosaka Research Center for Nuclear Physics (RCNP), Osaka University HYP2015

> With Noumi, Shirotori, Kim, Sadato, Yoshida, Oka, Hiyama, Nagahiro, Yasui

- 1. Introduction
- 2. Structure
- 3. Production
- 4. Decays

1. Introduction

Hyper nuclei

Go into deep inside Established shell structure

2015 Sept 7-11

Single particle orbits

2015 Sept 7-11

1. Introduction

Hyper nuclei

Charmed baryons

What can we learn?

Go into deep inside Established shell structure

2015 Sept 7-11

1. Introduction

Hyper nuclei

Go into deep inside Established shell structure Charmed baryons

Causes *isotope-shift* Will discriminates modes

Three or more particles \rightarrow Baryons with ρ and λ modes

Exotics — Multiquarks

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

2015 Sept 7-11

LHCb found Pentaquarks

http://arxiv.org/abs/1507.03414

7-8 TeV pp collision —> Λ_b

Near and above the threshold

2. Structure: *what do we expect to study?*

A heavy quark distinguish the fundamental modes λ and ϱ Place to look at qq dynamics

2. Structure: *what do we expect to study?*

A heavy quark distinguish the fundamental modes λ and ρ Place to look at *qq* dynamics

2015 Sept 7-11

Negative parity states — p-wave excitations - 1/2⁻, 3/2⁻

Quark model 3-body calculation by Yoshida & Sadato

Excitation energies — p-wave states —

Wave function

Mixing of
$$\Lambda(\text{phys}) = c_{\lambda} \Lambda(^2 \lambda) + c_{\rho} \Lambda(^2 \rho)$$

e.g. λ -mode dominant state: How much the other mode mixes?

3. Productions

Production rates reflect structure

Cross sections (Y_c/Y_s) and Ratios (Y_c^*/Y_c)

Strategy:

Forward peak (high energy) \rightarrow t-channel dominant

We look at: (1) <u>Absolute values</u>

by (Λ_c/Λ_s) by the Regge model, K^* , D^* Vector-Reggeon (2) Ratios of $B_c^*(\lambda \text{ modes}) / B_c$ by a one step process of Qd picture for λ -mode

HYP2015

Pion-induced reaction

$$\pi + p \rightarrow D^* + B_c^*$$

2015 Sept 7-11

- Vector-Reggeon dominance with some pseudoscalar
- ₂₀₁₅ Energy dependence is also well produced

Charm production spectrum

4. Decays

4. Decays — Pion emission— On going, Nagahiro and Yasui

- Unique feature ~ very near the threshold $\Lambda_c^*(2625, 3/2^-)$ $\Lambda_c^*(2595, 1/2^-)$ ~ 140 MeV p = 94MeV; allowed $\Sigma_c(2455, 1/2^+)$ $\Lambda_c(2286, 1/2^+)$
- Place to look at the *two independent* operators

$$\vec{\sigma} \cdot \vec{p}_i, \ \vec{\sigma} \cdot \vec{p}_f$$

$$\overline{q}\gamma_5 q \phi_{\pi}, \ \overline{q}\gamma^{\mu}\gamma_5 q \partial_{\mu}\phi_{\pi}$$

Quark model (H.O.) wave functions

Initial baryons Λc*	Γ _{exp} ^(full) [MeV] p [MeV]	$\Gamma_{\text{calc}}(\Lambda_c^* \longrightarrow \Sigma_c(2455) \pi) \text{ [MeV]}$						
		λ-mode, $l_{\lambda}=1$		ρ-mode , <i>l</i> _ρ =1				
		Doublet $d({}^{1}S_{0}) [l_{\lambda}, c]^{1/2, 3/2}$		Singlet $[d({}^{3}P_{0})]^{1/2}$	Doublet $[d(^{3}P_{1}) c]^{1/2, 3/2}$		Doublet $[d(^{3}P_{2}) c]^{3/2, 5/2}$	
		1/2-	3/2-	1/2-	1/2-	3/2-	3/2-	5/2-
$\Lambda_{c}(2595)$ 2592.25	2.6	1.7*	*	*	*	*	*	*
$\Lambda_{c}(2625)$ 2628.11	< 0.97 (102)	18	0.1	0**	81	0.04	0.08	0.03
$\Lambda_{c}(2765)$ Σ_{c} ?, 2766.6	50 (262)	76	8	0**	390	4.5	7.8	3.6
$\Lambda_{c}(2880)$ 2881.63	5.8 (376)	107	37	0**	624	21	37.5	17
$\Lambda_{c}(2940)$ 2939.3	17 (427)	110	66	0**	700	38	64	29

- * Almost threshold carefully studied, ** Forbidden (selection rule)
- $1/2^{-}$: s-wave $\pi\Sigma$ decay
- $3/2^{-}$, $5/2^{+}$: d, f-wave $\pi\Sigma$ decay —> suppressed by power $(q/a)^{4, 6}$
- $\Lambda_c(2880)$ and $\Lambda_c(2940)$ could be higher spin states?

Possible selection rules

Possible selection rules

 ρ -modes

Decays of baryons = of diquarks

Two conditions must be satisfied for baryons and for diquarks

$$\begin{split} &\Lambda_c(1/2^-,\rho) \to \Sigma_c(1/2^+,GS) + \pi \\ &d({}^3P_0) \to d({}^3S_1) + \pi \end{split} \quad \text{is not allowed}$$

2015 Sept 7-11

Summary

- Heavy quarks identify and disentangle essential modes of hadrons, ρ and λ modes.
- Productions are useful to
- Charm baryons are abundantly produced
- Decays are useful to further understand the structure

• Model Hamiltonian

$$\begin{split} H = & \frac{p_1^2}{2m_q} + \frac{p_2^2}{2m_q} + \frac{p_3^2}{2M_Q} - \frac{P^2}{2M_{tot}} \\ & + V_{conf}(HO) + V_{spin-spin}(Color-magnetic) + \dots \end{split}$$

• Solved by the Gaussian expansion method