

A New version of One-Boson-Exchange Baryon-Baryon Potential Model

Shoji SHINMURA

Gifu University, JAPAN

Introduction A New Version of OBEP with LQCD core S=-2 $\Lambda\Lambda$ and ΞN interactions Predictions for S=-3,-4 BB interactions Summary

HYP2015@Tohoku, Sept. 7-11, 2015

Introduction :

theoretical models of BB interactions

Potential model based on LQCD calculations Direct results from fundamental theory (Not only short-range part, but also long-range part) HAL-QCD group Hadron-exchange models with flavor-SU(3) symmetry Long-range part: hadronic mechanism Short-range part: 'short-range physics' Phenomenological core (form factors) NSC, Julich, FG(old version), etc, Quark-model : fss, new ESC, etc LQCD core : Our new model Chiral Perturbation models Reordering based on chiral symmetry Entem et al, Epellbaum et al., Heidenbauer et al.

They play complementary roles

Introduction:

Experimental knowledge on BB interactions

Two-body Scattering Phase shift analyses : NN scattering New version SAID Cross sections : YN scattering

Old data for $\Lambda N, \Sigma N - \Sigma N, \Sigma N - \Lambda N$ and $\Sigma^+ p$ KEK data

model-dependent(Indirect)

Hadron-Hadron(H-H) Interactions

at Low Energies

Old version: OBEP with cutoff(r_c=0.4fm) + SU(3)-symmetric phenomenological short-range core

New version: OBEP with cutoff (r_c=0.4fm) + LQCD-based short-range core

 $V=V_{core}(r)+(1-exp(-(r/r_c)^2))^4V_{OBEP}$

 $V_{core}(r)=V_c \exp(-(r/r_g)^2)$

In both versions, V_{OBEP} are defined in the same framework: ps, s, v-meson-exchange with physical masses and widths Exactly flavor-SU(3)-symmetric coupling constants

LQCD-based cores in the new version

T. Inoue et al. (HAL QCD collaboration) PTP124(2010)591

Flavor SU(3) Limit Even(1S0,3S1) states

pion mass = 1014 MeV red pion mass = 835 MeV green

Relative Strengths around r=0.2fm

	{27}	{1 0 *}	{10}	{8a}	{8s}	{1}	
_QCD	1	0.8	1.1	0.2	4.1	-0.6	
-G-A	1	0.8	0. 01	0.4	1.3	0.06	
-G-B	1	0.9	0.03	0.08	0.09	0.01	
NO1	1	0.8	1.1	0.2	3.0	-0.6	
Z01	1	0.8	1.1	0. 2	4. 1	-0.6	
Z01X	1	0.8	1.1	0. 2	4. 1	-0.6	
		IN		YN		YY	_

Z01X is determined with the contraint of attractive-EN interaction 10% variations in relative strengths are allowed !

NN phase shifts with new version (Z01X)

YN scattering with new version(Z01X)

- 🕂 Experimental Data
- ---- Fit by Z01X

Z01X	EXP
0.4645	0.33±0.05(1958)
	0.474±0.016(1968),
	0.465±0.011(1970)

Scatering length $a_{\Lambda\Lambda}({}^{1}S_{0})$ and $\Delta B_{\Lambda\Lambda}({}^{6}{}_{\Lambda\Lambda}He)$ from double hypernuclei and theoretical $\Lambda\Lambda$ potentials

All models predict attractive $\Lambda\Lambda$ potential in ${}^{1}S_{0}$ state

Potential	a _{ΛΛ} (1S0)	$\Delta B_{\Lambda\Lambda}(^{6}{}_{\Lambda\Lambda}He)$	
NSC97a	-0.33(-0.11)	():	
NSC97e	-0.50(-0.25)	No EN channel	
ESC04a	-1.15	1.36	
ESC04d	-1.32	0.98	
ESC08a	-0.88		
FSS		3.66	
fss2		1.41	
Ch-EFT	-1.52		
z01	-0.59		
w01	-0.65		
Z01X	-1.15		

NSC97,ESC-models:

Th.A. Rijken,V.G.J. Stoks, Y.Yamamoto, PRC59(1999)21. Th.A. Rijken,Y. Yamamoto, PRC73(2006)044008. Th.A. Rijken, M.M. Nagels, Y.Yamamoto, PTP suppl.185(2010)14. Ch-EFT:H.Polinder, J.Haidenbauer, U.-G.Meissner, PLB653(2007)29 FSS,fss2(quark model): Y. Fujiwara, M. Kohno, Y. Suzuki, NPA784(2007)161. Fg2014z,w :S.Shinmura, Ngo Thi Hong Xiem,(2014)

Experimental data: Nagara and Mikage Events(KEK E373)

ΔB_{ΛΛ}(⁶_{ΛΛ}He)=0.70±0.17MeV H. Takahashi, PRL87(2001)212502 K. Nakazawa, NPA835(2010)207

 $a_{\Lambda\Lambda}(1S0) \sim -0.8 \text{ fm}$ $a_{\Lambda\Lambda}(1S0) = -1.2\pm 0.6 \text{fm}$ C.J. Yoon,et al. PRC75(2007)044008.

J-PARC E07 experiments

Attractive **EN** interaction

Ξ^- in symmetric nuclear matter

potentals	U _Ξ	U _≘ (n)	U _Ξ (p)
NSC97e	44.7(35.8)	9.69	34.98
ESC04a	15.1		
ESC04b	36.3		
ESC04c	-5.5		
ESC04d	-18.7		
ESC08a	-20.2		
ESC08b	-32.4		
FSS	-14.9		
fss2	-5.3		
FG-A	-6.6(-5.3)	-0.2	-6.5
FG-B	43.6(34.9)	21.8	21.8
GSOBEP	28.1(22.5)	17.6	10.5
w01	22.1(17.7)	16.4	5.7
Z01	15.6(12.5)	11.9	3.7
Z01X	-7.5(-6.0)	0.6	-8.0

Theoretical Ξ N Interactions give very scattered results.

Isospin dependence: strongly model-dependent

Recent experiment (Kiso event) $B_{\Xi}(^{15}{}_{\Xi}C)=4.38\pm0.25MeV$ K. Nakazawa, JPS-meeting,HAW2014, 2WF7(2014)

$$J_{\Xi} \sim U_{\Lambda}/2$$

Calculations(Shell model) B_{Ξ}(¹²_{Ξ}Be)=4.38MeV(ESC04d) T. Motoba, S. Sugimoto NPA(2010)223

Attractive interaction

Partial Wave contributions to E single-particle potential in SNM

Ξ[−] in symmetric nuclear matter

Partial Wave	Neutron part (I=1)	Proton part	(I=0)
1S0	8.63	1.75	-5.13
3S1-3D1	2.67	0.46	-1.75
1P1	-2.14	-2.57	-3.00
3P0	0.16	-0.97	-2.10
3P1	-3.28	-1.40	0.48
3P2-3F2	-4.25	-4.30	-4.35
Total	0.58	-8.03	-16.64

S-waves(I=0) :Attractive S-waves(I=1) :Repulsive() P-waves: Attractive

We model the BB interactions in the whole range Short-range part by LQCD Long-(medium-) range part by OBE

We can determine the S=-3,-4 BB interactions without any additional parameters.

Predictions in S=-3 and -4 sectors

Scattering Lengths in 1S0 and 3S1 states with S=-3,-4 BB interactions

1 \

/**r** \

Scattering lengths(a) and effective ranges(r) (fm)				
	EFT(LO)*	nsc97f	fss2	Z01X
a _s (ΞΛ)	-33.5 ~ 9.07	-2.11	-1.08	-3.65 <mark>A</mark>
r _s (ΞΛ)	-1.00 ~ 0.84	3.21	3.55	2.80
a _t (ΞΛ)	0.33 ~ 0.31	0.33	0.26	-0.61wA
r _t (三八)	-0.36 ~-0.27	2.79	2.15	8.95
a _s (ΞΣ)	4.28 ~ 2.74 <mark>B</mark>	2.32 <mark>B</mark>	-4.63	2.81 <mark>B</mark>
r _s (ΞΣ)	0.96 ~ 0.81	1.17	2.39	1.29
$a_t(\Xi\Sigma)$	-2.45 ~ -3.89A	1.71 <mark>B</mark>	-3.48	3.37 <mark>B</mark>
$r_t(\Xi\Sigma)$	1.84 ~ 1.70	0.96	2.52	1.39
a _s (王王)	3.92 ~ 2.47 <mark>B</mark>	2.38 <mark>B</mark>	0.34	3.56 <mark>B</mark>
r _s (王王)	0.92 ~ 0.75	1.29	3.20	1.42
a _t (ΞΞ)	0.63 ~ 0.52 R	0.48	3.19	0.17 <mark>R</mark>
r _t (三三)	1.04 ~ 1.11	2.80	0.22	42.1

. ...

...

11 / \

•

Qualitatively, Similar properties are predicted

A: attractive R: repulsive (w : weakly) B: bound state

*Haidenbauer and Meissner, PLB684(2010)275

S-wave $\Xi\Xi$ phase shifts


```
We proposed a new version of BB potential model
    Long-range part : OBE
    Short-range part : LQCD
    Flavor-SU(3) symmetry
Our new version of BB potential reproduces reasonably
    Repulsive \Sigma N(I=3/2, 3S1), \Sigma N(I=1/2, 1S0)
    Attractive \Sigma N(I=3/2, 1S0), \Sigma N(I=1/2, 3S1)
    Attractive \Lambda\Lambda(I=0,1S0)
    Attractive U_{\Xi}(SNM) = -7MeV (Attractive P-wave \Xi N contributions)
and predicts S=-3,-4 BB interactions:
    3 s-wave bound states
         \Sigma \Xi (I=3/2, 1S0)(BE=1.5MeV)
         \Sigma \Xi (I=3/2,3S1)(BE=2.8MeV)
         至至(I=1,1S0)(BE=4.4MeV)
    Repulsive \Xi\Xi(I=0,3S1) interaction
    EFT(LO) and OBE models have similar properties
```