

¹Center for Computational Science, University of Tsukuba, Japan
 ²Yukawa Institute for Theoretical Physics, Kyoto University, Japan
 ³Theoretical Research Division, Nishina Center RIKEN, Japan
 ⁴College of Bioresouce Science, Nihon University, Japan
 ⁵Research Center for Nuclear Physics, Osaka University, Japan

Outline

Introduction

Brief explanation of effective block algorithm for various baryon-baryon channels

See also the poster session

- A benchmark for the implementation of hybrid parallel code
- Very preliminary result of LN potential at the physical point

Summary

[1] HN, Ishii, Aoki, Hatsuda [PACS-CS Collaboration], Pos LATTICE2008, 156 (2008).

- [2] HN [HAL QCD Collaboration and PACS-CS Collaboration], PoS LAT2009, 152 (2009).
- [3] HN [HAL QCD Collaboration], PoS LATTICE 2011, 167 (2011).
 [4] HN [HAL QCD Collaboration], PoS LATTICE 2013, 426 (2014).

Plan of research

Baryon interaction

J-PARC hyperon-nucleon (YN) scattering

Structure and reaction of (hyper)nuclei

Equation of State (EoS) of nuclear matter

Neutron star and supernova This talk: A fast algorithm of the lattice calculation,

the benchmark and preliminary LN result

Determination of the baryon-baryon interactions using lattice QCD at the physical point

About Project	Research Development	Computational Sciences
		Lattice QCD Nucleus Supernova Explosion Early Star Formation

Lattice QCD calculation

Formulation
Lattice QCD simulation

$$L = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$$

$$\langle 0(\bar{q}, q, U) \rangle = \int dU d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U)$$

$$= \int dU \det D(U) e^{-S_{\nu}(U)} O(D^{-1}(U))$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_{i}))$$

$$p_{A} \longrightarrow \left\langle \sum_{pA} (t) \sum_{pA} (t_{0}) \right\rangle$$

$$= \sum_{n} A_{n} \exp(-E_{n}(t - t_{0}))$$

Formulation
Lattice QCD simulation

$$L = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$$

$$\langle 0(\bar{q}, q, U) \rangle = \int dU d \bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q)$$

$$f(\vec{r}, t) O(\bar{q}, q)$$

$$\rightarrow \langle O(\vec{r}, t) O(\vec{r}, t) O(\vec{r}, t) O(\vec{r}, t) O(\vec{r}, t)$$

$$= \sum_{n} A_{n} \Psi_{n}(\vec{r}) \exp(-E_{n}(t-t_{0}))$$

```
HAL formulation
Slogan:
Make better use of the lattice
output ! (wave function)
   interacting region
       --> potential
                      Ishii, Aoki, Hatsuda,
                      PRL99, 022001 (2007);
                      ibid., arXiv:0805.2462[hep-ph].
```

NOTE:

> Potential is not a direct experimental observable.
> Potential is a useful tool to give (and to reproduce)
the physical quantities. (e.g., phase shift)

```
HAL formulation
Slogan:
Make better use of the lattice
output ! (wave function)
   interacting region
    --> potential
                      Ishii, Aoki, Hatsuda,
                      PRL99, 022001 (2007);
                      ibid., arXiv:0805.2462[hep-ph].
```

> Phase shift
> Nuclear many-body problems

$$R_{\alpha\beta}^{(J,M)}(\vec{r},t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X}+\vec{r},t) B_{2,\beta}(\vec{X},t) \overline{\mathcal{J}_{B_3B_4}^{(J,M)}(t_0)} \right| 0 \right\rangle / \exp\{-(m_{B_1}+m_{B_2})(t-t_0)\},$$

$$p = \varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) u_c, \qquad n = -\varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) d_c, \qquad (2)$$

$$\Sigma^{+} = -\varepsilon_{abc} \left(u_a C \gamma_5 s_b \right) u_c, \qquad \Sigma^{-} = -\varepsilon_{abc} \left(d_a C \gamma_5 s_b \right) d_c, \qquad (3)$$

$$\Sigma^{0} = \frac{1}{\sqrt{2}} \left(X_{u} - X_{d} \right), \qquad \Lambda = \frac{1}{\sqrt{6}} \left(X_{u} + X_{d} - 2X_{s} \right), \tag{4}$$

$$\Xi^{0} = \varepsilon_{abc} \left(u_{a} C \gamma_{5} s_{b} \right) s_{c}, \qquad \Xi^{-} = -\varepsilon_{abc} \left(d_{a} C \gamma_{5} s_{b} \right) s_{c}, \qquad (5)$$

where

$$X_u = \varepsilon_{abc} \left(d_a C \gamma_5 s_b \right) u_c, \quad X_d = \varepsilon_{abc} \left(s_a C \gamma_5 u_b \right) d_c, \quad X_s = \varepsilon_{abc} \left(u_a C \gamma_5 d_b \right) s_c, \tag{6}$$

A simplified (historical) version of the potential

$$\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t}\right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{\rm LO}(\vec{r}) R(\vec{r}, t) + \cdot (8),$$

See Ishii' s talk for more precise (modern) formulation of the potential

Effective block algorithm for various baryon-baryon calculations

Consider the proton-Lambda system as a specific example.

$$p = \varepsilon_{abc} (u_a C \gamma_5 d_b) u_c, \qquad n = -\varepsilon_{abc} (u_a C \gamma_5 d_b) d_c, \qquad (2)$$

$$\Sigma^- = -\varepsilon_+ (d C \gamma_5 s_b) d_c, \qquad (3)$$

$$\Sigma^0 = \frac{1}{\sqrt{2}} (X_u - X_d), \qquad \Lambda = \frac{1}{\sqrt{6}} (X_u + X_d - 2X_s), \qquad (4)$$

$$\Xi^0 = \varepsilon_{abc} (u_a C \gamma_5 s_b) s_c, \qquad \Xi^- = -\varepsilon_{abc} (d_a C \gamma_5 s_b) s_c, \qquad (5)$$
where
$$X_u = \varepsilon_{abc} (d_a C \gamma_5 s_b) u_c, \qquad X_d = \varepsilon_{abc} (s_a C \gamma_5 u_b) d_c, \qquad X_s = \varepsilon_{abc} (u_a C \gamma_5 d_b) s_c,$$

$$p_\alpha(x) = \varepsilon(c_1, c_2, c_3) (C \gamma_5) (\alpha_1, \alpha_2) \delta(\alpha, \alpha_3) u(\xi_1) d(\xi_2) u(\xi_3), \qquad (\xi_i = x_i \alpha_i c_i)$$

$$= \varepsilon(1, 2, 3) (C \gamma_5) (1, 2) \delta(\alpha, 3) u(1) d(2) u(3). \qquad (11)$$

$$\sum_{\substack{X \in \{C_{Y_5}\}(5, 6\} \delta(\beta, 3) + (C \gamma_5) (6, 3) \delta(\beta, 5) - 2(C \gamma_5) (3, 5) \delta(\beta, 6)\}} (12)$$

$$\times \{(C \gamma_5) (5, 6) \delta(\beta, 3) + (C \gamma_5) (6, 3) \delta(\beta, 5) - 2(C \gamma_5) (3, 5) \delta(\beta, 6)\} (12)$$

$$\times \langle u(1) d(4) u(2) d(5) s(6) u(3) \overline{u}(3') \overline{s}(6') \overline{d}(5') \overline{u}(2') \overline{d}(4') \overline{u}(1')).$$

$$\sum_{\substack{x \in \{C_{1}, \dots, C_{9}\}}} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]}} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]}} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]}} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]}} \sum_{\substack{x \in [C_{1}, \dots, C_{9}]} \sum_{\substack{x \in [C_{1}$$

$$p_{\alpha}(x) = \varepsilon(c_1, c_2, c_3)(C\gamma_5)(\alpha_1, \alpha_2)\delta(\alpha, \alpha_3)u(\xi_1)d(\xi_2)u(\xi_3), \qquad (\xi_i = x_i\alpha_i c_i) \\ = \varepsilon(1, 2, 3)(C\gamma_5)(1, 2)\delta(\alpha, 3)u(1)d(2)u(3).$$
(11)

$$\sum_{\vec{X}} \left\langle 0 \left| p_{\alpha}(\vec{X} + \vec{r}, t)\Lambda_{\beta}(\vec{X}, t)\overline{\mathcal{J}_{p_{\alpha}'\Lambda_{\beta'}}(t_0)} \right| 0 \right\rangle$$

$$= \sum_{\vec{X}} \frac{1}{6} \varepsilon(1, 4, 2) \varepsilon(5, 6, 3) \varepsilon(1', 4', 2') \varepsilon(5', 6', 3')(C\gamma_5)(1, 4)\delta(\alpha, 2)(C\gamma_5)(1', 4')\delta(\alpha', 2') \times \{(C\gamma_5)(5, 6)\delta(\beta, 3) + (C\gamma_5)(6, 3)\delta(\beta, 5) - 2(C\gamma_5)(3, 5)\delta(\beta, 6)\} \times \{(C\gamma_5)(5', 6')\delta(\beta', 3') + (C\gamma_5)(6', 3')\delta(\beta', 5') - 2(C\gamma_5)(3', 5')\delta(\beta', 6')\} \times \langle u(1)d(4)u(2)d(5)s(6)u(3)\bar{u}(3')\bar{s}(6')\bar{d}(5')\bar{u}(2')\bar{d}(4')\bar{u}(1')\rangle.$$

$$\sum_{c_1, \ldots, c_6} \sum_{\alpha_1, \ldots, \alpha_6} \sum_{c_1', \ldots, c_6', \alpha_1', \ldots, \alpha_6'} \sum_{c_1, \ldots, c_6, \alpha_1, \ldots, \alpha_6, c_1', \ldots, \alpha_6'} \sum_{(N_c, !, N_{\alpha})^{2B} \times N_u ! N_d ! N_s$$

•

$$\begin{aligned} [p_{\alpha\alpha'}^{(1)}](\vec{x}) &= \varepsilon(1,4,2)(C\gamma_5)(1,4)\delta(\alpha,2)\varepsilon(1',4',2')(C\gamma_5)(1',4')\delta(\alpha',2') \\ &\times \det \begin{vmatrix} \langle u(1)\bar{u}(1') \rangle & \langle u(1)\bar{u}(2') \rangle \\ \langle u(2)\bar{u}(1') \rangle & \langle u(2)\bar{u}(2') \rangle \end{vmatrix} \Big| \langle d(4)\bar{d}(4') \rangle, \end{aligned}$$

$$\begin{split} [\Lambda_{\beta\beta'}^{(1)}](\vec{y}) &= \langle u(3)\bar{u}(3')\rangle \langle d(5)\bar{d}(5')\rangle \langle s(6)\bar{s}(6')\rangle \\ &\times \varepsilon(5,6,3) \left\{ (C\gamma_5)(5,6)\delta(\beta,3) + (C\gamma_5)(6,3)\delta(\beta,5) - 2(C\gamma_5)(3,5)\delta(\beta,6) \right\} \\ &\times \varepsilon(5',6',3') \left\{ (C\gamma_5)(5',6')\delta(\beta',3') \right\}. \end{split}$$

This fact significantly slashes in the computational cost: The reduction factor at the first diagram is $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/1 = 1152$.

 $\begin{bmatrix} p_{\alpha\beta'}^{(2)} \end{bmatrix} (\vec{x}; c'_2, c'_3) = \varepsilon (1, 4, 2) (C\gamma_5) (1, 4) \delta(\alpha, 2) \varepsilon (1', 4', 2') (C\gamma_5) (1', 4') \times \delta(\beta', 3') \\ \times \det \begin{vmatrix} \langle u(1)\bar{u}(1') \rangle & \langle u(1)\bar{u}(3') \rangle \\ \langle u(2)\bar{u}(1') \rangle & \langle u(2)\bar{u}(3') \rangle \end{vmatrix} \left| \langle d(4)\bar{d}(4') \rangle,$ (21)

$$\begin{split} & [\Lambda_{\beta;\alpha'}^{(2)}](\vec{y};c_2',c_3') = \langle u(3)\bar{u}(2')\rangle \langle d(5)\bar{d}(5')\rangle \langle s(6)\bar{s}(6')\rangle \times \delta(\alpha',2') \\ & \times \varepsilon(5,6,3) \left\{ (C\gamma_5)(5,6)\delta(\beta,3) + (C\gamma_5)(6,3)\delta(\beta,5) - 2(C\gamma_5)(3,5)\delta(\beta,6) \right\} \\ & \times \varepsilon(5',6',3') \left\{ (C\gamma_5)(5',6') \right\}. \end{split}$$

are crossed as $[p_{\alpha\beta'}^{(2)}]$ and $[\Lambda_{\beta\alpha'}^{(2)}]$. Performed these manipulations, the number of explicit summations of indices reduces to only two colors which makes the reduction factor $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/(N_c^2) \in 128$.

$$\begin{aligned} & [p_{\alpha;\alpha'}^{(3)}](\vec{x};c_4',c_5',\alpha_4',\alpha_5') & (25) \\ &= \varepsilon(1,4,2)(C\gamma_5)(1,4)\delta(\alpha,2)\varepsilon(1',4',2')(C\gamma_5)(1',4')\delta(\alpha',2') & (26) \\ &\times \det \left| \begin{array}{c} \langle u(1)\bar{u}(1') \rangle & \langle u(1)\bar{u}(2') \rangle \\ \langle u(2)\bar{u}(1') \rangle & \langle u(2)\bar{u}(2') \rangle \end{array} \right| \langle d(4)\bar{d}(5') \rangle, & (27) \\ & [\Lambda_{\beta;\beta'}^{(3)}](\vec{y};c_4',c_5',\alpha_4',\alpha_5') & (28) \\ &= \varepsilon(5,6,3) \left\{ (C\gamma_5)(5,6)\delta(\beta,3) + (C\gamma_5)(6,3)\delta(\beta,5) - 2(C\gamma_5)(3,5)\delta(\beta,(29)) \\ &\times \varepsilon(5',6',3') \left\{ (C\gamma_5)(5',6')\delta(\beta',3') \right\} \end{aligned}$$

$$\times \langle u(3)\bar{u}(3')\rangle \langle d(5)\bar{d}(4')\rangle \langle s(6)\bar{s}(6')\rangle.$$
(30)

The number of explicit summations of indices reduces to two colors and two spinors which makes the reduction factor $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/(N_c^2N_{\alpha}^2) = 8.$

$$[p_{\alpha;\beta'}^{(4)}](\vec{x};c_1',c_6',\alpha_1',\alpha_6')$$

$$= \varepsilon(1,4,2)(C\gamma_5)(1,4)\delta(\alpha,2)$$
(33)
(34)

$$\times \varepsilon(5', 6', 3') \left\{ (C\gamma_5)(5', 6')\delta(\beta', 3') \right\}$$

$$\times \det \begin{vmatrix} \langle u(1)\bar{u}(1') \rangle & \langle u(1)\bar{u}(3') \rangle \\ \langle u(2)\bar{u}(1') \rangle & \langle u(2)\bar{u}(3') \rangle \end{vmatrix} \langle d(4)\bar{d}(5') \rangle, \tag{35}$$

$$[\Lambda_{\beta;\alpha'}^{(4)}](\vec{y};c_1',c_6',\alpha_1',\alpha_6')$$
(36)

$$= \varepsilon(5,6,3) \left\{ (C\gamma_5)(5,6)\delta(\beta,3) + (C\gamma_5)(6,3)\delta(\beta,5) - 2(C\gamma_5)(3,5)\delta(\beta,3) \right\} \times \varepsilon(1',4',2')(C\gamma_5)(1',4')\delta(\alpha',2')$$
(38)

$$\times \langle u(3)\bar{u}(2')\rangle \langle d(5)\bar{d}(4')\rangle \langle s(6)\bar{s}(6')\rangle.$$
(39)

exchanged, too. The number of explicit summations of indices reduces to two colors and two spinors which makes the reduction factor $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/(N_c^2N_{\alpha}^2) = 8.$

$$p_{\alpha\alpha'\beta'}^{(5)}](\vec{x};c_1',c_3',\alpha_1')$$

$$= \varepsilon(1,4,2)(C\gamma_5)(1,4)\delta(\alpha,2)\varepsilon(1',4',2')(C\gamma_5)(1',4')\delta(\alpha',2')\times\delta(\beta',3')$$

$$\times \det \begin{vmatrix} \langle u(1)\bar{u}(2')\rangle & \langle u(1)\bar{u}(3')\rangle \\ \langle u(2)\bar{u}(2')\rangle & \langle u(2)\bar{u}(3')\rangle \end{vmatrix} \langle d(4)\bar{d}(4')\rangle,$$

$$(42)$$

$$\begin{aligned} & [\Lambda_{\beta}^{(5)}](\vec{y}; c_{1}', c_{3}', \alpha_{1}') & (45) \\ &= \varepsilon(5, 6, 3) \left\{ (C\gamma_{5})(5, 6)\delta(\beta, 3) + (C\gamma_{5})(6, 3)\delta(\beta, 5) - 2(C\gamma_{5})(3, 5)\delta(\beta, (4)\beta) \right. \\ & \times \varepsilon(5', 6', 3') \left\{ (C\gamma_{5})(5', 6') \right\} \\ & \times \langle u(3)\bar{u}(1') \rangle \langle d(5)\bar{d}(5') \rangle \langle s(6)\bar{s}(6') \rangle. \end{aligned}$$

accompanied in the $[p_{\alpha\alpha'\beta'}^{(5)}]$. The number of explicit summations of indices reduces to two colors and one spinor which makes the reduction factor $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/(N_c^2N_{\alpha}) = 32.$

$$[p_{\alpha\alpha'\beta'}^{(6)}](\vec{x};c_2',c_6',\alpha_6')$$

$$= \varepsilon(1,4,2)(C\gamma_5)(1,4)\delta(\alpha,2) \times \delta(\alpha',2')$$
(50)
(51)

$$\times \varepsilon(5', 6', 3') \{ (C\gamma_5)(5', 6')\delta(\beta', 3') \}$$

$$\times \det \begin{vmatrix} \langle u(1)\bar{u}(2') \rangle & \langle u(1)\bar{u}(3') \rangle \\ \langle u(2)\bar{u}(2') \rangle & \langle u(2)\bar{u}(3') \rangle \end{vmatrix} \langle d(4)\bar{d}(5') \rangle,$$
(52)

$$[\Lambda_{\beta}^{(6)}](\vec{y};c_2',c_6',\alpha_6') \tag{53}$$

$$= \varepsilon(5,6,3) \left\{ (C\gamma_5)(5,6)\delta(\beta,3) + (C\gamma_5)(6,3)\delta(\beta,5) - 2(C\gamma_5)(3,5)\delta(\beta,(5)) \right\} \times \varepsilon(1',4',2')(C\gamma_5)(1',4')$$
(55)

$$\times \langle u(3)\bar{u}(1')\rangle \langle d(5)\bar{d}(4')\rangle \langle s(6)\bar{s}(6')\rangle.$$
(56)

are exchanged between $[p_{\alpha;\alpha'\beta'}^{(6)}]$ and $[\Lambda_{\beta}^{(6)}]$ while $\delta(\alpha', 2')$ is kept in $[p_{\alpha\alpha'\beta'}^{(6)}]$. The number of explicit summations of indices reduces to two colors and one spinor which makes the reduction factor $(N_c!N_{\alpha})^2 \times 2^{B-N_{\Lambda}-N_{\Sigma^0}}/(N_c^2N_{\alpha}) \in 32$.

Performed these manipulations based on the diagrammatic classification, most of the summations can be carried out prior to evaluating the FFT so that the number of iterations significantly reduces; The numbers of iteration are $\{1, 9, 144, 144, 36, 36\}$ or the baryon blocks $\{([p_{\alpha}^{(i)}] \times [\Lambda_{\beta}^{(i)}]); i = 1, \dots, 6\}$. Therefore only 370 iterations should be explicitly performed to obtain the four-point correlation function of the $p\Lambda$ system when we take the operator \overline{X}_u in $\overline{\Lambda}_{\beta'}$ in the source. For the sake of completeness, the total number of iterations does not change when we take the operator \overline{X}_s in $\overline{\Lambda}_{\beta'}$ in the source whereas the numbers of iteration $\{1, 36, 36, 144, 144, 36\}$ we en we consider the contribution from the operator X_d in $\Lambda_{\beta'}$ in the source which slightly differ from the former cases and the total number of iterations ≤ 397 .

Generalization to the various baryon-baryon channels strangeness S=0 to -4 systems

$$\begin{array}{ll} \langle pn\overline{pn}\rangle, & (4.1) \\ \langle p\overline{\Lambda p\Lambda}\rangle, & \langle p\Lambda\overline{\Sigma^{+}n}\rangle, & \langle p\overline{\Lambda \Sigma^{0}p}\rangle, \\ \langle \Sigma^{+}np\overline{\Lambda}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{+}n}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{0}p}\rangle, \\ \langle \Delta\Lambda\overline{\Lambda\Lambda}\rangle, & \langle \Lambda\Lambda\overline{p\overline{\Sigma^{-}}}\rangle, & \langle \Lambda\Lambda\overline{n\overline{z^{0}}}\rangle, & \langle \Lambda\overline{\Lambda\overline{\Sigma^{+}\Sigma^{-}}}\rangle, & \langle \Lambda\overline{\Lambda\overline{\Sigma^{0}\Sigma^{0}}}\rangle, \\ \langle p\overline{p}\overline{\Lambda}\overline{\Lambda}\rangle, & \langle n\overline{\Delta p\overline{\Sigma^{-}}}\rangle, & \langle n\overline{\Sigma^{0}}\overline{n\overline{z^{0}}}\rangle, & \langle p\overline{\Sigma^{-}\overline{\Sigma^{+}\Sigma^{-}}}\rangle, & \langle p\overline{\Sigma^{-}\overline{\Sigma^{0}\Sigma^{0}}}\rangle, & \langle p\overline{\Xi^{-}\overline{\Sigma^{0}\Lambda}}\rangle, \\ \langle n\overline{z^{0}}\overline{\Lambda\Lambda}\rangle, & \langle n\overline{z^{0}}\overline{p\overline{\Sigma^{-}}}\rangle, & \langle n\overline{z^{0}}\overline{n\overline{z^{0}}}\rangle, & \langle n\overline{z^{0}}\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle n\overline{z^{0}}\overline{\Sigma^{0}}\overline{\Sigma^{0}}\rangle, & \langle n\overline{z^{0}}\overline{\Sigma^{0}}\overline{\Lambda}\rangle, \\ \langle \Sigma^{+}\Sigma^{-}\overline{\Lambda\Lambda}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{p\overline{z^{-}}}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{n\overline{z^{0}}}\rangle, & \langle \Sigma^{0}\Sigma^{0}\overline{\Sigma^{+}\Sigma^{-}}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{\Sigma^{0}}\rangle, & \langle \Sigma^{+}\Sigma^{-}\overline{\Sigma^{0}}\overline{\Lambda}\rangle, \\ \langle \Sigma^{0}\Sigma^{0}\overline{\Lambda\Lambda}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{p\overline{z^{-}}}\rangle, & \langle \Sigma^{0}\overline{\Sigma^{0}}\overline{\overline{z^{0}}}\rangle, & \langle \Sigma^{0}\overline{\Delta}\overline{\Sigma^{0}}\overline{\Sigma^{0}}\rangle, & \langle \Sigma^{0}\overline{\Delta}\overline{\Sigma^{0}}\overline{\Lambda}\rangle, \\ \langle \overline{z^{-}}\overline{A\overline{z^{-}}\Lambda}\rangle, & \langle \overline{z^{-}}\overline{A\overline{\Sigma^{-}}\overline{\overline{z^{0}}}\rangle, & \langle \overline{z^{-}}\overline{A}\overline{\Sigma^{0}}\overline{\overline{z^{-}}}\rangle, & \langle \overline{z^{0}}\overline{\Delta}\overline{\overline{z^{-}}}\overline{\overline{z^{-}}}\rangle, & \langle \overline{z^{0}}\overline{\Sigma^{-}}\overline{\overline{z^{-}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{0}}\overline{\overline{z^{-}}\Lambda}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{z^{0}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{0}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{z^{0}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{0}}\overline{\overline{z^{-}}\overline{z^{-}}}\rangle\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{0}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{0}}\overline{\overline{z^{-}}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{0}}\overline{\overline{z^{-}}}\overline{z^{-}}\rangle\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{0}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}}\rangle\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{0}}}}\rangle, \\ \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{0}}\overline{z^{-}}\overline{\overline{z^{-}}\overline{\overline{z^{-}}}}\rangle, & \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}}\rangle, & \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}}\rangle, & \langle \overline{z^{-}}\overline{z^{-}}\overline{\overline{z^{-}}}\rangle\rangle, & \langle$$

Make better use of the computing resources!

Generalization to the various baryon-baryon channels strangeness S=0 and -1 systems

channel	# of diagrams	$\{(\# \text{ of iterations})^{\text{sign}}\}$	# of total iterations
$\langle pn\overline{pn}\rangle$	9	$\{1^+, 36^-, 144^-, 36^+, 36^+, 144^-, 144^+, 9^-, 36^+\}$	586
$\langle p\Lambda p\Lambda_{X_{y_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_$	6	$\{1^+, 9^-, 144^-, 144^+, 36^+, 36^-\}$	370
$\langle p\Lambda \overline{p\Lambda_{X_d}} \rangle$	6	$\{1^+, 36^-, 36^-, 144^+, 144^+, 36^-\}$	397
$\langle p\Lambda \Sigma^+ n \rangle$	6	$\{144^-, 36^+, 36^+, 144^-, 9^-, 36^+\}$	405
$\langle p\Lambda \overline{\Sigma^0_{X_u} p} \rangle$	6	$\{144^+, 36^-, 9^-, 36^+, 144^+, 1^-\}$	370
$\langle p\Lambda \overline{\Sigma^0_{X_J} p} \rangle$	6	$\{144^-, 36^+, 36^+, 144^-, 36^-, 1^+\}$	397
$\langle \Sigma^+ n \overline{p \Lambda_{X_u}} \rangle$	3	$\{144^-, 144^+, 36^-\}$	324
$\langle \Sigma^+ n \overline{p \Lambda_{X_d}} \rangle$	3	$\{144^-, 36^+, 9^-\}$	189
$\langle \Sigma^+ n \overline{p \Lambda_{X_s}} \rangle$	3	$\{36^-, 144^+, 36^-\}$	216
$\langle \Sigma^+ n \overline{\Sigma^+ n} \rangle$	3	$\{1^+, 36^-, 144^+\}$	181
$\langle \Sigma^+ n \overline{\Sigma^0_{X_u} p} \rangle$	3	$\{144^-, 36^+, 144^-\}$	324
$\langle \Sigma^+ n \overline{\Sigma^0_{X_J} p} \rangle$	3	$\{36^+, 9^-, 144^+\}$	189
$\langle \Sigma^0 p \overline{p \Lambda_{X_{u,s}}} \rangle$	6	$\{36^+, 144^-, 144^+, 36^-, 9^+, 1^-\}$	370
$\langle \Sigma^0 p \overline{p \Lambda_{X_d}} \rangle$	6	$\{36^+, 144^-, 36^+, 144^-, 36^+, 1^-\}$	397
$\langle \Sigma^0 p \overline{\Sigma^+ n} \rangle$	6	$\{36^-, 144^+, 36^-, 9^+, 36^-, 144^+\}$	405
$\langle \Sigma^0 p \overline{\Sigma^0_{X_u} p} \rangle$	6	$\{1^+, 36^-, 9^+, 144^-, 36^+, 144^-\}$	370
$\langle \Sigma^0 p \overline{\Sigma^0_{X_d} p} \rangle$	6	$\{1^-, 144^+, 36^-, 36^+, 36^-, 144^+\}$	397

Each number of iterations is less than 600

Generalization to the various baryon-baryon channels strangeness S=-2 systems

channel	# of diagrams	$\{(\# \text{ of iterations})^{\text{sign}}\}$	# of total iterations
$\langle \Lambda \Lambda \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Lambda \Lambda \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^+, 36^-, 144^-, 36^+, 36^-, 144^+, 36^+, 1^-\}$	434
$\langle \Lambda \Lambda \overline{p \Xi^{-}} \rangle$	8	$\{36^+, 144^-, 9^-, 36^+, 36^-, 9^+, 144^+, 36^-\}$	450
$\langle \Lambda \Lambda \overline{n} \overline{\Xi^{0}} \rangle$	8	$\{36^+, 36^-, 9^-, 144^+, 144^-, 9^+, 36^+, 36^-\}$	450
$\langle \Lambda \Lambda \overline{\Sigma^+ \Sigma^-} \rangle$	8	$\{36^-, 144^+, 36^+, 9^-, 9^+, 36^-, 144^-, 36^+\}$	450
$\langle \Lambda \Lambda \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Lambda \Lambda \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^-, 36^+, 144^+, 36^-, 36^+, 144^-, 36^-, 1^+\}$	434
$\langle p \Xi^{-} \overline{\Lambda_{X_q} \Lambda_{X_q}} \rangle \ (q = u, s)$	2	$\{36^+, 36^-\}$	72
$\langle p \Xi^{-} \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle$			
((q,q')=(d,u),(u,d),(s,d),(d,s))	2	$\{36^+, 144^-\}$	180
$\langle p \Xi^{-} \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle$			
((q,q')=(s,u),(u,s))	2	$\{9^+, 144^-\}$	153
$\langle p \Xi^{-} \overline{\Lambda_{X_d} \Lambda_{X_d}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle p \Xi^- \overline{p \Xi^-} \rangle$	2	$\{1^+, 144^-\}$	145
$\langle p \Xi^{-} \overline{n \Xi^{0}} \rangle$	2	$\{36^+, 144^-\}$	180
$\langle p \Xi^- \overline{\Sigma^+ \Sigma^-} \rangle$	2	$\{144^-, 36^+\}$	180
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{u}} \Sigma^{0}_{X_{u}}} \rangle$	2	$\{36^+, 36^-\}$	72
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{q}} \Sigma^{0}_{X_{q'}}} \rangle \ (q \neq q')$	2	$\{36^-, 144^+\}$	180
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_d} \Sigma^{0}_{X_d}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle p \Xi^{-} \overline{\Sigma_{X_u}^0 \Lambda_{X_u}} \rangle$	2	$\{36^+, 36^-\}$	72
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{a}} \Lambda_{X_{a'}}} \rangle$	Each nu	imber of iterations is les	s than <mark>600</mark>
((q,q') = (d,u), (u,d), (d,s))	2	$\{36^-, 144^+\}$	180
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_d} \Lambda_{X_d}} \rangle$	2	$\{144^-, 144^+\}$	288
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{s}} \Lambda_{X_{s}}} \rangle$	2	$\{144^+, 9^-\}$	153

Generalization	to the	various baryon-baryon	channels
strangeness S=-	2 syst	ems (cont'd)	
$\langle p \equiv \underline{\Sigma_{X_u}} \underline{\Sigma_{X_u}} \rangle$	2	{30',30 }	72
$\langle p \Xi^{-} \Sigma^{0}_{X_{q}} \Sigma^{0}_{X_{q'}} \rangle \ (q \neq q')$	2	$\{36^-, 144^+\}$	180
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{d}} \Sigma^{0}_{X_{d}}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{u}} \Lambda_{X_{u}}} \rangle$	2	$\{36^+, 36^-\}$	72
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{a}} \Lambda_{X_{a'}}} \rangle$			
((q,q') = (d,u), (u,d), (d,s))	2	$\{36^-, 144^+\}$	180
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{d}} \Lambda_{X_{d}}} \rangle$	2	$\{144^-, 144^+\}$	288
$\langle p \Xi^{-} \overline{\Sigma^{0}_{X_{u}} \Lambda_{X_{s}}} \rangle$	2	$\{144^+, 9^-\}$	153
$\langle n \Xi^0 \overline{\Lambda_{X_u} \Lambda_{X_u}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle n \Xi^0 \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle$			
((q,q')=(d,u),(u,d),(s,u),(u,s))	2	$\{144^+, 36^-\}$	180
$\langle n\Xi^0 \overline{\Lambda_{X_q} \Lambda_{X_q}} \rangle \ (q = d, s)$	2	$\{36^+, 36^-\}$	72
$\langle n \Xi^0 \Lambda_{X_q} \Lambda_{X_{q'}} \rangle$			
((q,q')=(s,d),(d,s))	2	$\{9^+, 144^-\}$	153
$\langle n \Xi^0 p \Xi^- \rangle$	2	$\{36^+, 144^-\}$	180
$\langle n \Xi^0 \overline{n \Xi^0} \rangle$	2	$\{1^+, 144^-\}$	145
$\langle n \Xi^0 \overline{\Sigma^+ \Sigma^-} \rangle$	2	$\{144^-, 36^+\}$	180
$\langle n \Xi^0 \overline{\Sigma^0_{X_u} \Sigma^0_{X_u}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle n\Xi^0 \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	2	$\{144^-, 36^+\}$	180
$\langle n \Xi^0 \overline{\Sigma^0_{X_d} \Sigma^0_{X_d}} \rangle$	2	$\{36^+, 36^-\}$	72
$\langle n \Xi^0 \overline{\Sigma^0_{X_u} \Lambda_{X_u}} \rangle$	2	$\{144^+, 144^-\}$	288
$\langle n \Xi^0 \overline{\Sigma_{X_a}^0} \Lambda_{X_{a'}} \rangle$	Each n	number of iterations is less	than 600
$((q,q') \stackrel{q}{=} (d,u), (u,d), (u,s))$	2	$\{144^-, 36^+\}$	180
$\langle n \Xi^0 \overline{\Sigma^0_{X_d} \Lambda_{X_d}} \rangle$	2 18	$\{36^-, 36^+\}$	72
$\langle n \Xi^0 \overline{\Sigma^0_{X_d} \Lambda_{X_s}} \rangle$	2	$\{144^-, 9^+\}$	153

Generalization to the various baryon-baryon channels strangeness S=-2 systems (cont'd)

channel	# of diagrams	$\{(\# \text{ of iterations})^{\text{sign}}\}$	# of total iterations
$\langle \Sigma^+ \Sigma^- \overline{\Lambda_{X_q} \Lambda_{X_q}} \rangle \ (q = u, d)$	2	$\{36^-, 36^+\}$	72
$\langle \Sigma^+ \Sigma^- \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle$			
((q,q')=(d,u),(u,d))	2	$\{9^-, 144^+\}$	153
$\langle \Sigma^+ \Sigma^- \overline{\Lambda_{X_g} \Lambda_{X_{g'}}} \rangle$			
((q,q')=(s,u),(s,d),(u,s),(d,s))	2	$\{36^-, 144^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{\Lambda_{X_s} \Lambda_{X_s}} \rangle$	2	$\{144^-, 144^+\}$	288
$\langle \Sigma^+ \Sigma^- \overline{p\Xi^-} \rangle$	2	$\{144^-, 36^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{n \Xi^0} \rangle$	2	$\{36^-, 144^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^+ \Sigma^-} \rangle$	2	$\{1^+, 144^-\}$	145
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Sigma^0_{X_q}} \rangle \ (q = u, d)$	2	$\{36^-, 36^+\}$	72
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	2	$\{9^+, 144^-\}$	153
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Lambda_{X_q}} \rangle \ (q = u, d)$	2	$\{36^-, 36^+\}$	72
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Lambda_{X_{q'}}} \rangle$	Each nu	umber of iterations is les	s than 600
((q,q')=(d,u),(u,d))	2	$\{9^+, 144^-\}$	153
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Lambda_{X_s}} \rangle \ (q = u, d)$	2	$\{144^-, 36^+\}$	180
$\langle \Sigma^0 \Sigma^0 \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Sigma^0 \Sigma^0 \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^+, 36^-, 144^-, 36^+, 36^-, 144^+, 36^+, 1^-\}$	434
$\langle \Sigma^0 \Sigma^0 \overline{p \Xi^-} \rangle$	8	$\{36^+, 144^-, 9^-, 36^+, 36^-, 9^+, 144^+, 36^-\}$	450
$\langle \Sigma^0 \Sigma^0 \overline{n \Xi^0} \rangle$	8	$\{36^+, 36^-, 9^-, 144^+, 144^-, 9^+, 36^+, 36^-\}$	450
$\langle \Sigma^0 \Sigma^0 \overline{\Sigma^+ \Sigma^-} \rangle$	8	$\{36^-, 144^+, 36^+, 9^-, 9^+, 36^-, 144^-, 36^+\}$	450
$\left< \Sigma^0 \Sigma^0 \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \right> (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Sigma^0 \Sigma^0 \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^-, 36^+, 144^+, 36^-, 36^+, 144^-, 36^-, 1^+\}$	434
$\langle \Sigma^0 \Lambda \overline{p \Xi^-} \rangle$	8	$\{36^+, 144^-, 9^-, 36^+, 36^-, 9^+, 144^+, 36^-\}$	450
$\langle \Sigma^0 \Lambda \overline{n \Xi^0} \rangle$	8	$\{36^+, 36^-, 9^-, 144^+, 144^-, 9^+, 36^+, 36^-\}$	450
	-		

Generalization to the various baryon-baryon channels strangeness S=-2 systems (cont'd)

$\langle \Sigma^+ \Sigma^- \Lambda_{X_q} \Lambda_{X_{q'}} \rangle$			
((q,q')=(s,u),(s,d),(u,s),(d,s))	2	$\{36^-, 144^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{\Lambda_{X_s} \Lambda_{X_s}} \rangle$	2	$\{144^-, 144^+\}$	288
$\langle \Sigma^+ \Sigma^- \overline{p\Xi^-} \rangle$	2	$\{144^-, 36^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{n \Xi^0} \rangle$	2	$\{36^-, 144^+\}$	180
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^+ \Sigma^-} \rangle$	2	$\{1^+, 144^-\}$	145
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Sigma^0_{X_q}} \rangle \ (q = u, d)$	2	$\{36^-, 36^+\}$	72
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	2	$\{9^+, 144^-\}$	153
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Lambda_{X_q}} \rangle \ (q = u, d)$	2	$\{36^-, 36^+\}$	72
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_q} \Lambda_{X_{q'}}} \rangle$	Each r	number of iterations is less	than 600
((q,q')=(d,u),(u,d))	2	$\{9^+, 144^-\}$	153
$\langle \Sigma^+ \Sigma^- \overline{\Sigma^0_{X_s}} \Lambda_{X_s} \rangle \ (q = u, d)$	2	$\{144^-, 36^+\}$	180
$\langle \Sigma^0 \Sigma^0 \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Sigma^0 \Sigma^0 \overline{\Lambda_{X_q} \Lambda_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^+, 36^-, 144^-, 36^+, 36^-, 144^+, 36^+, 1^-\}$	434
$\langle \Sigma^0 \Sigma^0 \overline{p \Xi^-} \rangle$	8	$\{36^+, 144^-, 9^-, 36^+, 36^-, 9^+, 144^+, 36^-\}$	450
$\langle \Sigma^0 \Sigma^0 \overline{n \Xi^0} \rangle$	8	$\{36^+, 36^-, 9^-, 144^+, 144^-, 9^+, 36^+, 36^-\}$	450
$\langle \Sigma^0 \Sigma^0 \overline{\Sigma^+ \Sigma^-} \rangle$	8	$\{36^-, 144^+, 36^+, 9^-, 9^+, 36^-, 144^-, 36^+\}$	450
$\langle \Sigma^0 \Sigma^0 \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Sigma^0 \Sigma^0 \overline{\Sigma^0_{X_q} \Sigma^0_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^-, 36^+, 144^+, 36^-, 36^+, 144^-, 36^-, 1^+\}$	434
$\langle \Sigma^0 \Lambda \overline{p \Xi^-} \rangle$	8	$\{36^+, 144^-, 9^-, 36^+, 36^-, 9^+, 144^+, 36^-\}$	450
$\langle \Sigma^0 \Lambda \overline{n \Xi^0} \rangle$	8	$\{36^+, 36^-, 9^-, 144^+, 144^-, 9^+, 36^+, 36^-\}$	450
$\langle \Sigma^0 \Lambda \overline{\Sigma^+ \Sigma^-} \rangle$	8	$\{36^-, 144^+, 36^+, 9^-, 9^+, 36^-, 144^-, 36^+\}$	450
$\langle \Sigma^0 \Lambda \overline{\Sigma^0_{X_q} \Lambda_{X_{q'}}} \rangle \ (q = q')$	8	$\{1^+, 9^-, 144^-, 144^+, 144^-, 144^+, 9^+, 1^-\}$	596
$\langle \Sigma^0 \Lambda \overline{\Sigma^0_{X_q} \Lambda_{X_{q'}}} \rangle \ (q \neq q')$	8	$\{1^-, 36^+, 144^+, 36^-, 36^+, 144^-, 36^-, 1^+\}$	434

Generalization to the various baryon-baryon channels strangeness S=-3 and -4 systems

channel	# of diagrams	$\{(\# \text{ of iterations})^{\text{sign}}\}$	# of total iterations
$\langle \Xi^- \Lambda \overline{\Xi^- \Lambda_{X_{u,s}}} \rangle$	6	$\{1^+, 36^-, 144^+, 144^-, 36^+, 9^-\}$	370
$\langle \Xi^- \Lambda \overline{\Xi^- \Lambda_{X_d}} \rangle$	6	$\{1^+, 36^-, 144^+, 36^-, 144^+, 36^-\}$	397
$\langle \Xi^- \Lambda \overline{\Sigma^- \Xi^0} \rangle$	6	$\{36^-, 9^+, 144^-, 144^+, 36^-, 36^+\}$	405
$\langle \Xi^- \Lambda \overline{\Sigma_{X_u}^0} \Xi^- \rangle$	6	$\{36^+, 9^-, 144^+, 36^-, 144^+, 1^-\}$	370
$\langle \Xi^{-}\Lambda \overline{\Sigma^{0}_{X_{d}}} \Xi^{-} \rangle$	6	$\{144^-, 36^+, 36^-, 36^+, 144^-, 1^+\}$	397
$\langle \Sigma^{-} \Xi^{0} \overline{\Xi^{-}} \Lambda_{X_{u}} \rangle$	3	$\{36^-, 144^+, 36^-\}$	216
$\langle \Sigma^{-} \Xi^{0} \overline{\Xi^{-} \Lambda_{X_{d}}} \rangle$	3	$\{9^-, 36^+, 144^-\}$	189
$\langle \Sigma^{-} \Xi^{0} \overline{\Xi^{-} \Lambda_{X_{s}}} \rangle$	3	$\{36^-, 144^+, 144^-\}$	324
$\langle \Sigma^{-}\Xi^{0}\overline{\Sigma^{-}\Xi^{0}}\rangle$	3	$\{1^+, 144^-, 36^+\}$	181
$\langle \Sigma^{-} \Xi^{0} \overline{\Sigma^{0}_{X_{u}}} \Xi^{-} \rangle$	3	$\{36^-, 36^+, 144^-\}$	216
$\langle \Sigma^{-} \Xi^{0} \overline{\Sigma^{0}_{X_{J}} \Xi^{-}} \rangle$	3	$\{144^+, 9^-, 36^+\}$	189
$\langle \Sigma^0 \Xi^- \overline{\Xi^- \Lambda_{X_{u,s}}} \rangle$	6	$\{9^+, 36^-, 144^+, 144^-, 36^+, 1^-\}$	370
$\langle \Sigma^0 \Xi^- \overline{\Xi^- \Lambda_{X_d}} \rangle$	6	$\{36^+, 144^-, 36^+, 144^-, 36^+, 1^-\}$	397
$\langle \Sigma^0 \Xi^- \overline{\Sigma^- \Xi^0} \rangle$	6	$\{36^-, 36^+, 144^-, 144^+, 9^-, 36^+\}$	405
$\langle \Sigma^0 \Xi^- \overline{\Sigma^0_{X_u} \Xi^-} \rangle$	6	$\{1^+, 144^-, 36^+, 144^-, 9^+, 36^-\}$	370
$\langle \Sigma^0 \Xi^- \overline{\Sigma^0_{X_d} \Xi^-} \rangle$	6	$\{1^-, 144^+, 36^-, 36^+, 36^-, 144^+\}$	397
$\langle \Xi^{-}\Xi^{0}\overline{\Xi^{-}\Xi^{0}}\rangle$	6	$\{1^+, 36^-, 9^+, 144^+, 36^-, 144^+\}$	370

Each number of iterations is less than 600

	Effec	tive	block	algor	ithm	to ca	Iculat	e the	
	(pnpn)	52 c	hanne	els of	4pt	corre	lator	(4.1)	
	$(p\Lambda \overline{p\Lambda})$ $(\Sigma^+ n \overline{p})$ $(\Sigma^0 p \overline{p\Lambda})$	$\langle \overline{\Lambda} \rangle, \langle p\Lambda \overline{\Sigma^+ n} \overline{\Lambda} \rangle, \langle \Sigma^+ n \overline{\Sigma^+} \overline{\Lambda} \rangle, \langle \Sigma^0 p \overline{\Sigma^+} \overline{\Lambda} \rangle, \langle \Sigma^0 p \overline{\Sigma^+} \overline{\Lambda} \rangle$	$ar{n} angle, \langle p\Lambda\overline{\Sigma^{0}p}\ \overline{n} angle, \langle \Sigma^{+}n\overline{\Sigma^{0}}\ \overline{n} angle, \langle \Sigma^{0}p\overline{\Sigma^{0}} angle$ $ar{n} angle, \langle \Sigma^{0}p\overline{\Sigma^{0}} angle$	<u>⟩</u> , <u>p</u>), p},				(4.2)	
	$(\Lambda\Lambda\overline{\Lambda})$ $(p\Xi^{-}\overline{\Lambda})$ $(n\Xi^{0}\overline{\Lambda})$ $(\Sigma^{+}\Sigma^{-})$ $(\Sigma^{0}\Sigma^{0}\overline{\Lambda})$	$egin{array}{c} ar{\Lambda} angle, & \langle\Lambda\Lambdaar{ ho} angle, \ ar{\Lambda} angle, & \langle p\Xi^{-} angle, \ ar{\Lambda} angle, & \langle n\Xi^{0}ar{\mu} angle, \ ar{\Lambda} angle, & \langle n\Xi^{0}ar{\mu} angle, \ ar{\Lambda} angle, & \langle \Sigma^{0}\Sigma^{0}\ ar{\Lambda} angle, & \langle \Sigma^{0}\Lambdaar{\ell} angle, \ ar{\chi}^{0}\Lambdaar{\ell} angle, \end{array}$	$egin{array}{c} \overline{\Xi^{-}} angle, & \langle\Lambda\Lambda, \ \overline{p\Xi^{-}} angle, & \langle p\Xi, \ \overline{z\Xi^{-}} angle, & \langle n\Xi, \ \overline{p\Xi^{-}} angle, & \langle \Sigma^{+}, \ \overline{p\Xi^{-}} angle, & \langle \Sigma^{0}, \ \overline{p\Xi^{-}} angle, & \langle \Sigma^{0}, \ \overline{p\Xi^{-}} angle, & \langle \Sigma^{0}, \ \overline{z\Xi^{-}} angle, & \langle \Sigma^{0}, \ \overline{z}^{-} angle, & \langle \Sigma$	$ \begin{array}{l} \overline{n\Xi^{0}} \rangle, & \langle \Lambda \\ \overline{n\Xi^{0}} \rangle, & \langle p \\ \overline{n\Xi^{0}} \rangle, & \langle n \\ \Sigma^{-} \overline{n\Xi^{0}} \rangle, & \langle n \\ \Sigma^{-} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \Sigma^{0} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \Lambda \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \end{array} $	$\begin{array}{l} \Lambda\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{+}\Sigma^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Sigma^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Lambda\overline{\Sigma^{+}\Sigma^{-}}), \end{array}$	$\begin{array}{l} \langle \Lambda \Lambda \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle p \Xi^{-} \overline{\Sigma^{0} \Sigma^{0}} \rangle \\ \langle n \Xi^{0} \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle \Sigma^{+} \Sigma^{-} \overline{\Sigma^{0} \Sigma^{0}} \rangle \\ \langle \Sigma^{0} \Sigma^{0} \overline{\Sigma^{0} \Sigma^{0}} \rangle \end{array}$	$\langle p \Xi^{-} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle n \Xi^{0} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle \Sigma^{+} \Sigma^{-} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle \Sigma^{0} \Lambda \overline{\Sigma^{0} \Lambda} \rangle$), <u>,</u> (4.3)),	
	$(\Xi^{-}\Lambda\overline{\Xi})$ $(\Sigma^{-}\Xi^{0})$ $(\Sigma^{0}\Xi^{-})$	$\overline{\Sigma^{-}\Lambda}$), $\langle \Xi^{-}\Lambda \rangle$ $\overline{\Sigma^{-}\Lambda}$), $\langle \Sigma^{-}\Xi \rangle$ $\overline{\Sigma^{-}\Lambda}$), $\langle \Sigma^{0}\Xi \rangle$	$\begin{array}{l} & \sqrt{\Sigma^{-}\Xi^{0}} \rangle, \langle \Xi \\ \Xi^{0}\overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Sigma \\ \Xi^{-}\overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Sigma \end{array}$	$\Sigma^{-}\Lambda \overline{\Sigma^{0}\Sigma^{-}}\rangle,$ $\Sigma^{-}\Sigma^{0}\overline{\Sigma^{0}\Sigma^{-}}\rangle,$ $\Sigma^{0}\Sigma^{-}\overline{\Sigma^{0}\Sigma^{-}}\rangle,$				(4.4)	
	(Ξ-Ξ0Ξ	$\overline{\Sigma^{-}\Sigma^{0}}$).						(4.5)	
*	Elapse tir	nes to	calcula	te the	52 mat	rix corr	elators	(MPI+Ope	enMP)
*		[tasks	_per_n	ode] x	[OMP_N	UM_TH	IREADS]]	
*		64x1	32x2	16x4	8x4	4x8	2x16	1x32	
*	Step-1	0:14	0:16	0:09	0:09	0:07	0:06	0:06	
*	Step-2	0:10	0:11	0:12	0:12	0:12	0:13	0:14	
						HN, Po	S(LATT)	ICE2013)	426.

HA-PACS

- ★ BASE
 - Intel E5-2670 (16core) + NVIDIA M2090 (x4) 332.8 GFlops 665 GFlops (x4) 128 GBytes 6 GBytes (x4)
- ★ TCA
 - Intel E5-2680v2 (20core) + NVIDIA K20X (x4) 448 GFlops 1310 GFlops (x4) 128 GBytes 6 GBytes (x4)

MPI+OpenMP + CUDA

- * For HA-PACS, 1PE has 16 CPU cores and 4 GPUs:
 - cudaSetDevice(GPU_id); specifies the GPU
 - GPUid is determined by MPI_id or thread_id
 - We take "4mpi * 4threads" configuration and
 - GPU_id = MPI_id

 $MPI_id = 0$ $MPI_id = 1$ $MPI_id = 2$ $MPI_id = 3$

Multi-GPU

Detailed elapsed time

	GPU	CPU-1	CPU-2	CPU-3	
0	(0.0e+00)	0.0e+00	0.0e+00	0.0e+00	Start
3 7 53	(1.2e-02) (5.8e-02) (1.7e+00)	2.3e-01 4.7e-01 4.2e+00	2.1e-01 5.1e-01 4.3e+00	2.3e-01 4.7e-01 4.2e+00	End A(1) End A(2) End B
55 57 86	(1.7e+00) (1.7e+00) (1.9e+00)	4.4e+00 4.6e+00 7.2e+00	4.5e+00 4.7e+00 7.0e+00	4.4e+00 4.6e+00 7.2e+00	End A(1) End A(2) End B
88 90 119	(1.9e+00) (1.9e+00) (2.1e+00)	* *	* * *	* *	End A(1) End A(2) End B
121 123 152	(2.1e+00) (2.2e+00) (2.3e+00)	* * *	* * *	* * *	End A(1) End A(2) End B
	GPU p	erforms a	lot of	job!	
847 849 878	(6.9e+00) (6.9e+00) (7.1e+00)	* *	* *	* * *	End A(1) End A(2) End B

52 channel calculation with 16^3x32 lattice

Without GPU, elapsed time is 2:22 With GPU (M2090), 1:45

(4.1) $\langle pn\overline{pn}\rangle$, $\langle p\Lambda\overline{p\Lambda}\rangle, \ \langle p\Lambda\overline{\Sigma^+n}\rangle, \ \langle p\Lambda\overline{\Sigma^0p}\rangle,$ $\langle \Sigma^+ n \overline{p} \Lambda \rangle, \langle \Sigma^+ n \overline{\Sigma^+ n} \rangle, \langle \Sigma^+ n \overline{\Sigma^0 p} \rangle,$ (4.2) $\langle \Sigma^0 p \overline{p \Lambda} \rangle, \ \langle \Sigma^0 p \overline{\Sigma^+ n} \rangle, \ \langle \Sigma^0 p \overline{\Sigma^0 p} \rangle,$ $\langle \Lambda \Lambda \overline{\Lambda \Lambda} \rangle$, $\langle \Lambda \Lambda \overline{p \Xi^{-}} \rangle$, $\langle \Lambda \Lambda \overline{n \Xi^{0}} \rangle$, $\langle \Lambda \Lambda \overline{\Sigma^{+} \Sigma^{-}} \rangle$, $\langle \Lambda \Lambda \overline{\Sigma^{0} \Sigma^{0}} \rangle$, $\langle p\Xi^-\overline{\Lambda\Lambda}\rangle, \quad \langle p\Xi^-\overline{p\Xi^-}\rangle, \quad \langle p\Xi^-\overline{n\Xi^0}\rangle, \quad \langle p\Xi^-\overline{\Sigma^+\Sigma^-}\rangle, \quad \langle p\Xi^-\overline{\Sigma^0\Sigma^0}\rangle, \quad \langle p\Xi^-\overline{\Sigma^0\Lambda}\rangle,$ $\langle n\Xi^0\overline{\Lambda\Lambda}\rangle,\quad \langle n\Xi^0\overline{p\Xi^-}\rangle,\quad \langle n\Xi^0\overline{n\Xi^0}\rangle,\quad \langle n\Xi^0\overline{\Sigma^+\Sigma^-}\rangle,\quad \langle n\Xi^0\overline{\Sigma^0\Sigma^0}\rangle,\quad \langle n\Xi^0\overline{\Sigma^0\Lambda}\rangle,$ (4.3) $\langle \Sigma^+ \Sigma^- \overline{\Lambda \Lambda} \rangle, \; \langle \Sigma^+ \Sigma^- \overline{p \Xi^-} \rangle, \; \langle \Sigma^+ \Sigma^- \overline{n \Xi^0} \rangle, \; \langle \Sigma^+ \Sigma^- \overline{\Sigma^+ \Sigma^-} \rangle, \; \langle \Sigma^+ \Sigma^- \overline{\Sigma^0 \Sigma^0} \rangle, \; \langle \Sigma^+ \Sigma^- \overline{\Sigma^0 \Lambda} \rangle, \; \langle \Sigma^- \overline{\Sigma^0 \Lambda} \rangle, \; \langle$ $\langle \Sigma^0 \Sigma^0 \overline{\Lambda \Lambda} \rangle, \quad \langle \Sigma^0 \Sigma^0 \overline{p \Xi^-} \rangle, \quad \langle \Sigma^0 \Sigma^0 \overline{n \Xi^0} \rangle, \quad \langle \Sigma^0 \Sigma^0 \overline{\Sigma^+ \Sigma^-} \rangle, \quad \langle \Sigma^0 \Sigma^0 \overline{\Sigma^0 \Sigma^0} \rangle,$ $\langle \Sigma^0 \Lambda \overline{p \Xi^-} \rangle, \quad \langle \Sigma^0 \Lambda \overline{n \Xi^0} \rangle, \quad \langle \Sigma^0 \Lambda \overline{\Sigma^+ \Sigma^-} \rangle,$ $\langle \Sigma^0 \Lambda \overline{\Sigma^0 \Lambda} \rangle$, $\langle \Xi^{-}\Lambda \overline{\Xi^{-}\Lambda} \rangle, \ \langle \Xi^{-}\Lambda \overline{\Sigma^{-}\Xi^{0}} \rangle, \ \langle \Xi^{-}\Lambda \overline{\Sigma^{0}\Xi^{-}} \rangle,$ $\langle \Sigma^{-}\Xi^{0}\overline{\Xi^{-}\Lambda}\rangle, \ \langle \Sigma^{-}\Xi^{0}\overline{\Sigma^{-}\Xi^{0}}\rangle, \ \langle \Sigma^{-}\Xi^{0}\overline{\Sigma^{0}\Xi^{-}}\rangle,$ (4.4) $\langle \Sigma^0 \Xi^- \overline{\Xi^- \Lambda} \rangle, \; \langle \Sigma^0 \Xi^- \overline{\Sigma^- \Xi^0} \rangle, \; \langle \Sigma^0 \Xi^- \overline{\Sigma^0 \Xi^-} \rangle,$ $\langle \Xi^{-}\Xi^{0}\overline{\Xi^{-}\Xi^{0}}\rangle.$ (4.5)

Results

★ HA-PACS:

- M2090 K20X (665 GFlops) (1310 GFlops)
- 27 GFlops AllBaryons<<<...>>>(...) 20 GFlops
- 1.6 GFlops 1.1 GFlops A<<<...>>>(...)
- 5.4 GFlops 6.1 GFlops B<<<...>>>(...)
- 4.7 GFlops

26 GFlops B<<<...>>>(...)

[using streams]

Lattice size: 16[^]3 x 32

Summary on main part

(1) We present a fast algorithm to calculate the 4pt correlation function of Lambda-Nucleon system, which was used to study the hyperonic nuclear forces from lattice QCD.
(2) Generalize the target system to various baryon-baryon channels. (E.g., 52 channel NBS wave functions can be obtained at the same time from one computing job for the 2+1 lattice QCD.)
(3) In this approach, the number of iterations to obtain the four-point correlation function is remarkably smaller than the numbers given in the unified contraction algorithm[2].

(4) A hybrid parallel (C++) and multi-GPU (CUDA) program has been implemented with MPI and OpenMP, working on supercomputer (HA-PACS); Concurrent kernel executions with streams improve the computing performance for K20X (TCA part of HA-PACS).

- [1] H.N. PoS(LAT2013)426;(LAT2008)156;(LAT2009)152;(LAT2011)167; (LAT2013)426.
- [2] Doi and Endres, Comput. Phys. Commun. 184, 117 (2013).

Benchmark

Benchmark of the hybrid parallel C++ code implementation

Comparisons have been made for all 52 channels over 31 time-slices, 16*16*16 points for spatial, and 2*2*2*2 points for the spin degrees of freedom.

There are 16*16*16*2*2*2*2 = 65536 points per time-slice per channel.

For example:

			*					
>>>	a b aPbP	х	У	z	ratio	From_other_work	From_this_work	diff
								(=From_other-From_this)
>>>	0 1 0 1	0	0	0	1.0000000000000e+00	4.755520154185e-20	4.755520154185e-20	-8.907425992791e-34
>>>	0 1 0 1	1	0	0	1.0000000000000e+00	1.064483789589e-19	1.064483789589e-19	-4.935195482492e-34
>>>	0 1 0 1	2	0	0	1.0000000000000e+00	1.034021677632e-19	1.034021677632e-19	-8.185202263646e-34
>>>	0 1 0 1	3	0	0	1.0000000000000e+00	9.903890629525e-20	9.903890629525e-20	-9.750020343460e-34
>>>	0 1 0 1	4	0	0	1.0000000000000e+00	9.480310911656e-20	9.480310911656e-20	-1.095372655870e-33
>>>	0 1 0 1	5	0	0	1.0000000000000e+00	1.030125191701e-19	1.030125191701e-19	-9.388908478888e-34
>>>	0 1 0 1	6	0	0	1.0000000000000e+00	8.655174217981e-20	8.655174217981e-20	-6.500013562307e-34
>>>	0 1 0 1	7	0	0	1.0000000000000e+00	2.229267218351e-20	2.229267218351e-20	-9.087981925077e-34
>>>	0 1 0 1	8	0	0	9.999999999996e-01	2.330235858756e-21	2.330235858757e-21	-8.911187574714e-34
>>>	0 1 0 1	9	0	0	1.0000000000000e+00	2.034855576332e-20	2.034855576332e-20	-7.011588703785e-34
>>>	0 1 0 1	10	0	0	1.0000000000000e+00	3.822483016345e-20	3.822483016345e-20	-6.981496048404e-34
>>>	0 1 0 1	11	0	0	1.0000000000000e+00	6.506309796602e-20	6.506309796602e-20	-4.453712996395e-34
>>>	0 1 0 1	12	0	0	1.0000000000000e+00	8.118512223003e-20	8.118512223003e-20	-6.981496048404e-34
>>>	0 1 0 1	13	0	0	1.0000000000000e+00	5.202429085187e-20	5.202429085187e-20	-1.017131751880e-33
>>>	0 1 0 1	14	0	0	1.0000000000000e+00	5.725220267276e-20	5.725220267276e-20	-7.342607912976e-34
>>>	0 1 0 1	15	0	0	1.0000000000000e+00	4.331313772187e-20	4.331313772187e-20	-8.185202263646e-34

Benchmark (only LN-LN channel at t-t_=+001)

pLwave_pL+001

Benchmark (at LN-LN channel)

1.00-0							1
1.00-0							
1.00-00			100			1	-
1.00-00							4
1.85-38				i i an		and the second	
Lange St.		. ÷.,				<u></u>	
1.85-39	Red and	-			-		
1.80.0							1
Land La							
1.00-00							1

1.00-0

1.000-000

1.85-1		ALC: NO		E
1.00-00	- I.	Chine.	days	
LID-IN E	••••••		1	
1.80-0.	━ー┝ーー☆		4	+
1.00-00		******		÷
1.00-00	de la constante			÷
1.80-3	Sec.	100		1000
1.00-30				1
1.00-04				

Later Television	-			
1.000				
1.00ete	100	10	10.00	10 m 1
I ADAME		÷		
(Jacker E		4 4		and and
1.00+00 F		÷		
1.00-30		÷		
1.80-0			-	and the second
1.8040				
1.000	-	-		

State To and the state of the s
1.85+6
Lateral Control of the second s
Lateria, base of the second
(and produced and and and
↓assesE=++++++++++++++++++++++++++++++++++
Land for the standard and a standard and the standard in the standard standard standard standard standard stand
1.02-20 Seale of Statements of Statements
1.80+0
(JEAN)
(John Barling & Contract of C

1.000-1	a line point as	-			
1.00-10					52
1.00-00	100	100	. A	and the second	
1.00-00		÷.		5	-
I JOHN					
1.00-00		- free fr		· • • • • •	
1.00-00				.÷÷	-
1.00-00	Contra de la contr	din to	-	Parent P	
1.00-00					
1.00-04					1
(JUDI-TR)			-		_
10,000,000					

I JOH			
i Jiliwiki			
1.00-00			
1.00-00 E-			
(Jac-20 [-		kan dar	 han da in
i ana an E-		+	
1.00-01	100		
Lattera			
1.00-2			

Ser.	-	-	-
10-10 0-00	An	<u>.</u>	J.

8-2 8-2			

Lateral and	44		i Bai	H 1
i an-m 🗗				
Lander E-			· {}	
1.00-30	-ii	j	-jj	- † -,
	States of the			a de la
				1
1.80-00	100	-	-	1
0.				

1 martine			and the second	-
		100		
1.00-30	• • • • • • • • •			<u>۲</u>
1.00-30				<u>} – </u>
I ROPAR	• - h			
1.82-7				
Lattera				
1.80-R			-	
Langerta Ma				
0	10000000		0000000000	

Summary

(I-1) Lattice QCD calculation for hyperon potentials toward the physical point calculation. (Lambda-N, Sigma-N: central, tensor) (I-2) Effective hadron block algorithm for the various baron-baryon interaction

A hybrid parallel (C++) and multi-GPU (CUDA) program is implemented (MPI + OpenMP).

Reasonable performances at various hybrid parallel execution on the supercomputers (BlueGene/Q and HA-PACS)

(II-1) Benchmark calculation for the 52 channel of NBS WFs. (II-2) Very preliminary LN potential at physical point.