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BB interactions are inputs to investigate the nuclear structure
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Nuclear force
Hyperon force
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HAL QCD methodHAL QCD method

Technical improvements
Unified Contraction Algorithm, 
Time dependent method, 
Higher partial waves, 
Finite volume method vs potential

Extensions of the method
Generalized BB interaction
Charmed baryon system
Meson-meson,meson-baryon system
Three-body interaction
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Interests of S=-2 multi-baryon systemInterests of S=-2 multi-baryon systemInterests of S=-2 multi-baryon systemInterests of S=-2 multi-baryon system
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Λ−Ν attraction
Λ−Λ weak attraction
m

H 
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Λ 
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K.Nakazawa and KEK-E176 & E373 Collaborators

Conclusions of the “NAGARA Event”
Double-Λ hypernucleus

Ξ hypernucleus

Ξ−Ν attraction
K.Nakazawa and KEK-E373 Collaborators

Conclusions of the “KISO Event”

H-dibaryon

Ξ
14N

Λ
10Be Λ

5He

The flavor singlet state with J=0 predicted by R.L. Jaffe. 
Strongly attractive color magnetic interaction.
No quark Pauli principle for flavor singlet state.
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Strong attraction is expected.Strong attraction is expected.
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Short range repulsion in BB interaction could be a result of 
Pauli principle and color-magnetic interaction for the quarks.

Strengths of repulsive core in YN and YY interaction are
largely depend on their flavor structures.

For the s-wave BB system, no repulsive core is predicted 
in flavor singlet state which is known as H-dibaryon channel.

In view of quark degrees of freedomIn view of quark degrees of freedom Oka, Shimizu and Yazaki NPA464 (1987)



Numerical resultsNumerical resultsNumerical resultsNumerical results



Spin BB channels SU(3) representation
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I=0 states

I=1 states

I=2 states

Strong attraction
           (H-dibaryon)

Attraction

Similar to 
The NN potential

Strong repulsion

Repulsion
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ΝΞ potential is strongly attractive.
We can see an attractive pocket at around r=0.7fm.
We have to check that the potential is saturated well in this time range.

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!

Belongs to 8a pletBelongs to 8a plet
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Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!

We can see an attractive pocket at around r=0.7fm.
We have to check that the potential is saturated well in this time range.

Belongs to 27pletBelongs to 27plet
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NNΞ, ΛΣΞ, ΛΣ (I=1)  (I=1) 11SS
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All diagonal element are totally repulsive in whole range. 

Diagonal ΝΞ potential is strongly repulsive unlike the I=0 3S
1
 case.

It means that the ΝΞ potential is strongly depend on the channel. 

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!
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Diagonal elementsDiagonal elements Off-diagonal elementsOff-diagonal elements

All diagonal element have a repulsive core and shallow attractive pocket. 
Diagonal ΝΞ potential has a shallow attractive pocket. 
We find that ΝΞ−ΣΣ transition potential is relatively strong 

comparing to the other transition potentials

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV 
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 channel near the physical point channel near the physical point

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

Diagonal elementsDiagonal elements Off-diagonal elementsOff-diagonal elements

All diagonal element have a repulsive core ΣΣ−ΣΣ potential is strongly repulsive. 

Diagonal ΝΞ potential is more attractive than the ΛΛ potential.

We need more statistics to discuss physical observables through this potential.

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!
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00
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Diagonal elementsDiagonal elements Off-diagonal elementsOff-diagonal elements

Potential of flavor singlet channel does not have a repulsive core 

Potential of flavor octet channel is strongly repulsive which reflects Pauli effect.

Off-diagonal potentials are visible only in r<1fm region.

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!



H-dibaryon channel (2-ch calculation)H-dibaryon channel (2-ch calculation)H-dibaryon channel (2-ch calculation)H-dibaryon channel (2-ch calculation)



Effective two channel potentialEffective two channel potentialEffective two channel potentialEffective two channel potential
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Original coupled channel equation 

Reduced coupled channel equation 

The same scattering phase shift would be expected in a low energy region.

Non-locality (energy dependence, higher derivative contribution) 

of potential matrix could be enhanced.

Truncation of ΣΣ channel
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ΛΛ, ΝΞ ΛΛ, ΝΞ (I=0) (I=0) 11SS
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Potential calculated by only using 
ΛΛ and ΝΞ channels

 Long range part of potential is stable
against the time slice

Short range part of ΝΞ potential is 
largely changed.

Deviation from potential in 3ch calc.
can be seen mainly in r<1fm.

Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV Preliminary!

ΛΛ−ΛΛΛΛ−ΛΛ ΛΛ−ΝΞΛΛ−ΝΞ

ΝΞ−ΝΞΝΞ−ΝΞ
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ΛΛ ΛΛ andand ΝΞ  ΝΞ (I=0) (I=0) 11SS
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00
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Nf = 2+1 full QCD with L = 8fm, mπ = 145 MeV 

t=09t=09 t=10t=10

ΛΛ and ΝΞ phase shift is calculated by using 2ch effective potential.

For both cases, we found the sharp resonance just below the ΝΞ threshold.

Time slice saturation should be checked.

3ch calculation(need more statistics)

Preliminary!



  

Summary and outlookSummary and outlookSummary and outlookSummary and outlook
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We have investigated coupled channel S=-2 baryon-baryon interactions 
from lattice QCD.
Simulation is performed near the physical point

mπ=145MeV, La=8fm.

This talk focused on the S=-2 BB interactions
ΛΛ potential is weakly attractive.
ΝΞ potential is largely depend on the channel.
H-dibaryon channel

There is strongly attractive potential in flavor singlet state.
It is not enough statistics to calculate several observables 

and to discuss the fate of H-dibayon.

Further investigation will be performed with high statistical data.
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Massively parallel super computer Huge experimental facility

Study the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactionsStudy the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions

They would be complement each other
to complete knowledge of generalized BB interaction.

Lattice QCD simulationLattice QCD simulation ExperimentExperiment
Difficult to perform collision experiment

Collision data are scarceSuffered from statistical noise

More intensity 
       for more data

High performance 
           for more data

Exp.

Lat.

Accessibility

Difficult to calculate light quarks S= 0

S=-1

S=-2

S=-3

S=-2

S=-4



BB interaction from NBS wave functionBB interaction from NBS wave functionBB interaction from NBS wave functionBB interaction from NBS wave function

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
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Derivative (velocity) expansion of U is performed to deal with its nonlocality.

U ( r⃗ , r⃗ ' ) = [V C(r )+S 12V T (r )]+[ L⃗⋅S⃗ sV LS (r )+ L⃗⋅S⃗ a V ALS (r )]+O(∇
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Leading order partLeading order part

For the case of oct-oct system,

U ( r⃗ , r⃗ ' ) = [V C (r )+S12V T1
(r )+S ii V T 2

(r )+O (Spin op3
)]+O(∇
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Leading order partLeading order part

For the case of dec-oct and dec-dec system,

≡ [V C
eff

(r)]+O(∇
2
)

We consider the effective central potential which contains 
           not only the genuine central potential but also tensor parts.
We consider the effective central potential which contains 
           not only the genuine central potential but also tensor parts.
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Two-channel coupling case

S.Aoki [HAL QCD collab.] Proc. Jpn. Acad., Ser. B, 87 509
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NBS wave function with ith energy eigen stateNBS wave function with ith energy eigen state

We define potentials which satisfy a coupled channel Schrodinger equation
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Considering two different energy eigen states

Leading order of velocity expansion and time-derivative method
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