

Study of Hyperon Interactions from Heavy-Ion Collisions using STAR Detector at RHIC

Neha Shah for the STAR Collaboration Shanghai Institute of Applied Physics, CAS

Outline

- $\rightarrow \Lambda\Lambda$ Correlation Function
 - H-dibaryon (|S| = 2)
 - H-dibaryon and two particle correlations
 - Summary of H-dibaryon search
- ➔ Hypertriton life-time
- → Future plans

Introduction

- Standard Model: Baryons 3 quarks and Mesons pair of quark-antiquark
- >1977: within Quark Bag Model, Jaffe predicted H-dibaryon made of six quarks (uuddss) (Phys. Rev. Lett. 38,195 (1977); 38, 617(E)(1977))
- \blacktriangleright Exotic hadrons long standing challenge in hadron physics

Pentaguark

Meson-Baryon molecule

Tetraquark **Meson-Meson molecule**

Hexaquark **Baryon-Baryon molecule**

Introduction

September 8, 2015

Exotics

Quark content, decay modes and mass of exotic states in strangeness sector:

particle	Mass (MeV)	Quark composition	Decay mode
f _o	980	qqss	ππ
a _o	980	qqss	πη
K(1460)	1460	qqqs	Κππ
Λ(1405)	1405	qqq s q	πΣ
Θ ⁺ (1530)	1530	qqq q s	KN
н	2245	uuddss	ΛΛ
NΩ	2573	qqqsss	ΛΞ
ΞΞ	2627	qqssss	ΛΞ
ΩΩ	3228	SSSSSS	$\Lambda K^- + \Lambda K^-$

H-dibaryon (Theory-I)

Properties : $J^{\pi} = 0^+$, mass : (1.9-2.8) GeV/c²

$$\psi(\mathbf{H}) = \sqrt{\frac{1}{8}}\psi(\Lambda\Lambda) + \sqrt{\frac{4}{8}}\psi(\mathcal{N}\Xi) - \sqrt{\frac{3}{8}}\psi(\Sigma\Sigma)$$

Decay Modes:

Channel	Threshold mass (GeV/c2)	ΔS
ΛΛ	2.231	0
рΞ	2.249	0
Λρπ	2.192	1
ρρππ	2.152	2
nn	1.9	2

Phys. Rev. Lett. 38 (1977) 195 Phys. Rev. C 40 (1989) 115 Phys. Rev. C 85 (2012) 045202

H-dibaryon (Theory-II)

Lattice calculation – a bound state above the physical pion mass

- Phys. Rev. Lett. 106 (2011) 162001, Phys. Rev. Lett. 106 (2011) 162002
- \succ Chiral extrapolation to physical pion mass leads to unbound H

Phys. Rev. Lett. 107 (2011) 092004, Phys. Lett. B 706 (2011) 100

H-dibaryon (Experiment)

- > NAGARA event Measurement of ${}_{\Lambda\Lambda}{}^{6}H \rightarrow \Lambda\Lambda + {}^{4}He$ $\Rightarrow BE \sim 6.91 \text{ MeV}$
- KEK-E522 observation of 2.6σ enhancement for ΛΛ invariant mass spectra – resonance!

Other Experimental searches:

BNL E810, E836, E885, E888, E896, KEK E224, kTeV@Fermilab, NA49, Belle, ALICE

September 8, 2015

Venues for Dibaryon Search

- Hot and dense, strongly interacting partonic matter
- Environment suitable to form exotic hadrons through coalescence or phase space correlations

Why Heavy Ion Collisions?

Central Au+Au Collision (0-5%) mid-rapidity dN/dy @ 200 GeV :

Phys. Rev. Lett 98 (2007) 062301, Phys. Rev. C 83(2011) 24901, arXiv:0909.0566, Phys. Rev. C 85 (2012) 064912

Coalescence Model: Integrated yield of H in Au+Au @ 200 GeV in central collisions $\sim 10^{-3}$ - 10^{-5}

- Invariant mass
 - Significant combinatorial background in central Au+Au collisions makes search difficult
- > Two particle correlations
 - Information about Quantum statistics, Final state interaction, exotic particles

Two Particle Correlation Function

> Depletion in two particle correlation function if there is a bound H-dibaryon as it would exhaust Λ pairs at low momentum

Relativistic Heavy Ion Collider (RHIC)

September 8, 2015

STAR: Excellent PID and tracking

SINAP

- More than a billion minimum bias events for Au+Au @ 200 GeV

Hyperon reconstruction

September 8, 2015

SINAP

ΛΛ Correlation Function

- $\Lambda\Lambda$ and their anti-particle correlation function are nearly equal
- CF(Q=0) > CF_{os}(Q=0) \Rightarrow interaction is attractive, QS \rightarrow Quantum Statistics
- High Q tail \rightarrow residual correlations from Σ , Ξ

ΛΛ Correlation Function

Fit function from Lednicky-Lyuboshitz analytical model:

 $C(Q) = N(1 + \lambda [\sum_{s} \rho_{s}(-1)^{s} exp(-r_{0}^{2}Q^{2}) + \Delta CF^{FSI} + a_{res} exp(-Q^{2}r_{res}^{2})])_{(SJNP 35 (1982) 770)}$

N- normalization, λ – suppression parameter, a_res – amplitude of residual term r_res – width of the Gaussian

 $\rho_0 = \frac{1}{4}(1-P^2) \rho_1 = \frac{1}{4}(3+P^2)$ P=Polariz.=0

 $\Delta CF^{\text{FSI}} = 2\rho_0 [\frac{1}{2} |f^0(k)/r_0|^2 (1-d_0^0/(2r_0\sqrt{\pi})) + 2Re(f^0(k)/(r_0\sqrt{\pi}))F_1(r_0Q) - 2Im(f^0(k)/r_0)F_2(r_0Q)]$

 r_0 - emission radius, d_0 - effective radius, f_0 – scattering length

Scattering amplitude: $f^{s}(k)=(1/f_{0}^{s}+1/2d_{0}^{s}k^{2}-ik)^{-1}$, k=Q/2

 $F_1(z) = \int_0^z dx \exp(x^2 - z^2)/z \quad F_2(z) = [1 - \exp(-z^2)]/z$

ΛΛ Correlation Function

SINAP

Fit using Lednicky-Lyuboshitz analytical model:

$$\begin{split} \textbf{C}(\textbf{Q}) = \textbf{N}(1 + \lambda [\sum_{s} \rho_{s}(-1)^{s} exp(-r_{0}^{2}\textbf{Q}^{2}) + \Delta \textbf{C} \textbf{F}^{\text{FSI}} + a_{\text{res}} exp(-\textbf{Q}^{2}r_{\text{res}}^{2})]) \\ \textbf{N-normalization, } \lambda - suppression parameter \end{split}$$

Interaction parameters:

Emission radius $r_0 = 2.96 \pm 0.38^{+0.96}_{-0.02}$ fm

Scattering length $a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08}$ fm

Effective range $r_{eff} = 8.52 \pm 2.56^{+2.09}$ fm

 χ^2 /NDF = 0.56

$\Lambda\Lambda$ Correlation Function

Baryon-baryon interaction model \Rightarrow attractive potential

A rather weak interaction exists between $\Lambda\Lambda$ compared to NN and $p\Lambda$

STAR Collaboration, Phys. Rev. Lett 114, 022301 (2015) K. Morita, T. Furumoto and A. Ohnishi, Phys. Rev. C 91 024916 (2015) (parallel: 6a-1)

n-n Phys. Lett B, 80 (1979) 187 p-n Phys. Rev. C 66 (2002) 047001 p-p Mod. Phys. 39 (1967) 584 p-Λ Phys. Rev. Lett. 83 (1999) 3138 ΛΛ Phys. Rev. C 66 (2002) 024007 ΛΛ Nucl. Phys. A 707 (2002) 491

H-dibaryon Signal from Coalescence Expectation

SINAP

Assuming H-dibaryon are stable against strong decay and are produced through coalescence of Λ pairs:

 $(1/2\pi p_{T})d^{2}N_{H}/dp_{T}dy = 16B ((1/2\pi p_{T})d^{2}N_{A}/dp_{T}dy)^{2}$,

where B is coalescence fraction. (Phys. Lett. B 350 (1995) 147)

Integrated yield $(dN_{H}/dy) = (1.23 \pm 0.47_{stat} \pm 0.61_{sys})x10^{-4}$

More experimental events are necessary to confirm or rule out the existence of resonance pole in low Q region

• Measured $a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08}$ fm, $r_{eff} = 8.52 \pm 2.56^{+2.09}_{-0.74}$ fm suggests non-existence of H-dibaryon as bound state of $\Lambda\Lambda$

H-dibaryon Weak Decay

Topological reconstruction of weak decay: $H \rightarrow \Lambda p\pi$

- Mass range: 2.2 GeV/ $c^2 < m_{_{\rm H}} < 2.231 \text{ GeV}/c^2$
- No significant signal observed with respect to mixed event and rotational background

- $\checkmark \Lambda\Lambda$ interaction is attractive
- ✓ Attraction is not strong enough to form stable H-dibaryon
- ✓ Interaction parameters: $|1/a_0| > 0.5 \text{ fm}^{-1}$ and $r_{eff} \ge 3 \text{ fm}^{-1}$
- ✓ Measured interaction parameter gives indication towards nonexistence of bound H below the N Ξ and $\Sigma\Sigma$ threshold.

✓ First hyper nucleus was observed in 1952.

Parallel 4c-3 Talk: Yifei Xu

- ✓ Binding energy and lifetime are sensitive to YN interaction.
- ✓ The hypertriton being a loosely-bound nuclear system, its mean lifetime should be close to the free Lambda life time.
- \checkmark Life time measurements from Bubble chamber, emulsion and heavy-ion experiments are smaller than the free Λ life time.
- ✓ The hypertriton lifetime data are not accurate to distinguish between model, more precise measurements are needed.

Hypertriton life-time measurement

 $\tau = 182^{+89}_{-45}$ (stat) ± 27 (sys) ps (Science 328 (2010) 58)

✓ Signal from 2-body and 3-body decay

Parallel 4c-3 Talk: Yifei Xu

✓ Largest sample of hypertriton

Hypertriton life-time measurement

Future plans

Observation of di-baryon in Δ-Δ system from WASA-at-COSY ⇒ renewed interest in di-baryon structure within the QCD (Phys. Rev. Lett. 106 (2011) 242302, Phys. Lett. B721 (2013) 229, Phys.Lett. B743 (2015) 325)

N-Ω potential may be attractive to form a bound state (Phy. Rev. Lett. 59 (1987) 627, Phy. Rev. C 69 (2004) 065207, Phy. Rev. C 70 (2004) 035204, Nucl. Phys. A 928 (2014) 89)

➤ ΞΞ -a bound state analogous to deuteron (G. A. Miller, Chin. J. Phys. 51 (2013) 466)

STAR has collected more than billion minimum bias events for Au+Au
@ 200 GeV, which will allow us to extend measurement to NΩ and ΞΞ
and provide precise measurement of hypertriton life time.

> A unique opportunity at RHIC for hyperon physics!

Thank you!