

HYP2015, Sendai, Japan 7th September 2015

Satoshi N Nakamura, Tohoku University

Hypernuclear spectroscopy via the (e,e'K⁺) reaction

Analysis Details: T.Gogami parallel 1a-5

Future Programs at JLabL.Tang, plenary11th Sep.

JLab E05-115 collaboration, 2009, JLab Hall-C

Quantum Many-body System Bound by the Strong Int.

10^{-15} m

 10^4 m

Spectroscopy of Hypernuclei

NN scat.

LQCD

Baryon Interaction

Obs. 2 M_{\odot} Hyperon Puzzle

Production of Λ Hypernuclei

Spectroscopic techniques of Hypernuclei

Method	Resolution	Absolute E	Yield	comments
(e,e'K+)	0.5 MeV	Ø	× 100nb/sr	$p \to \Lambda$
(π+,K+)	1.5 – 2 MeV	O (norm ¹² _A C)	O 10μb/sr	$n ightarrow \Lambda$
(K⁻, π⁻)	~2 MeV	O (norm ¹² _A C)	◎ 10mb/sr	$n ightarrow \Lambda$
γ-ray	0.003 MeV	×	-	-
Decay π	0.1 MeV	O (only g.s.)	-	Fragments

Characteristics of (e,e'K⁺) HY study

Electromagnetic production

Convert Proton to Lambda : Mirror to well studied HY by (π,K), (K, π) Absolute energy calibration with Λ and Σ⁰ masses

High quality primary beam
 High energy resolution (< 1MeV)
 Thin enriched target

Challenge of (e,e'K) HY Study

 Huge e' Background due to Bremsstrahlung and Møller scattering Signal/Noise, Detector

 Less Hypernuclear Cross Section
 Coincidence Measurement (e', K+) Limited Statistics
 DC beam is necessary

High Quality Electron Beam is Essential !

Hypernuclear experiments at JLab

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method Λ , Σ^0 , $^7_\Lambda$ He, $^{12}_\Lambda$ B, $^{28}_\Lambda$ Al Light Hypernuclei E94-107 (2004-5) Two HRSs + SC Septum $\Lambda, \Sigma^{0}, {}^{9}_{\Lambda}Li, {}^{12}_{\Lambda}B, {}^{16}_{\Lambda}N$ Light Hypernuclei

E05-115 (2009) : HKS+HES, new Chicane beamline, Splitter Λ , Σ^{0} , $_{\Lambda}^{7}$ He , $^{12}_{\Lambda}$ B, $^{52}_{\Lambda}$ V Light to medium-heavy Hypernuclei

Facilities for (e,e'K⁺) HY study

JLab Hall-C HNSS (2000) HKS (2005) HKS+HES (2009)

JLab Hall-A HRS+HRS (2004)

Mainz MAMI-C A1 KaoS (2008-)

JLab E05-115 (Hall-C) setup

$p(e,e'K^+)\Lambda$, Σ^0 : Elementary Process

Mass dependence of B_{Λ}

Remove apparent A dependence

0.5 MeV (FWHM)

Absolute MM calibration

0.7 MeV (FWHM)

$${}^{12}C(\pi^+, K^+){}^{12}_{\Lambda}C$$

1.45 MeV (FWHM)
 ${}^{12}_{\Lambda}C_{gs}$ energy
from emulsion

$^{12}\Lambda C$ emulsion data

Nuclear Physics A484 (1988) 520-524

TABLE 1 ^a)					
Decay mode	Range of the hypernucleus (µm)	$B_A (as {}^{12}_{A}C) (MeV)$	Ref.		
1. ${}^{12}_{\Lambda}C \rightarrow \pi^- + {}^{12}N(g.s.)$	_	11.14±0.57	4)		
2. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{4}He + {}^{7}Be$	3.0 ± 0.8	10.45 ± 0.33	3)		
3. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{11}C$	4.3 ± 0.7	10.50 ± 0.47	3)		
4.	3.5 ± 0.4	10.65 ± 0.33	1,2)		
5.	3.5 ± 0.5	10.85 ± 0.44	1,2)		
6.	3.4 ± 0.5	11.59 ± 0.45	^{1,2})		
7.	3.2 ± 0.4	15.67 ± 0.50	1,2)		

¹¹C (3/2-) : Ex = 4.8MeV

situation is not the case for π^- mesonic decay modes of ${}^{12}_{A}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.

The value obtained for B_A of ${}^{12}_{A}$ C, (10.80 ± 0.18) MeV

Statistical errors quoted, systematic errors (~0.04 MeV) reduced by measuring M_A in same emulsion stack.

Nuclear Physics A547 (1992) 369

¹²∧C

10.76 ± 0.19

Statistical error only

Reference for all (π , K) B_{Λ} data: B_{Λ} (¹²_{Λ}Cg.s.) = 10.76 +-0.19MeV

 B_{Λ} (¹²_{Λ}Bg.s.) = 11.45 +-0.07 MeV Emulsion Result (M.Juric et al.)

 B_{Λ} (¹²_{Λ}Bg.s.) = 11.38 +- 0.02 (stat) MeV (JLab E05-115)

Totally independent measurement

Remove apparent A dependence

T. Gogami, Doctor thesis, (2014) Tohoku U.

Shift ${}^{12}_{\Lambda}C_{gs} B_{\Lambda} by 0.54 MeV$

$^{7}_{\Lambda}$ He = 6 He + Λ

⁶He : 2n halo

E.Hiyama et al. PRC 80, 054321 (2009)

7 _AHe spectrum of E01-01

SNN et al., PRL 110, 012502 (2013)

unbound ⁶He excited state + Λ = bound ⁷_{Λ}He excited state

$^{7}_{\Lambda}$ He spectrum of E05-115

unbound ⁶He excited state + Λ = bound ⁷_{Λ}He excited state

CSB interaction test in A=7 iso-triplet comparison

SNN et al., PRL 110, 012502 (2013)

CSB interaction test in A=7 iso-triplet comparison

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

¹⁰B(e,e'K⁺)¹⁰^ABe

10 $^{\Lambda}B$ and 10 $^{\Lambda}Be$

Comparison of the ground states (A=10)

²⁸ $_{\Lambda}Al$, first beyond p-shell hypernucleus by (e,eK) $_{^{28}Si(e, e'K^+)^{28}Al}$

peak	B_{Λ} (MeV)
#1	-16.5
#2	-8.5
#3	-1.1
#4	+1.9

 $^{52}\mathrm{Cr}(e,e'K^+)^{52}_{\Lambda}\mathrm{V}$

peak	B_{Λ} (MeV)
#1	-21.4
#2	-12.1
#3	-0.4
#4	+10.9

Summary

We have been developing large magnetic spectrometers and new techniques in the last decade at JLab.

The (e,e'K) HY spectroscopy is *now established*.

- Absolute binding energy calibration is one of great advantage of the (e,e'K) HY spectroscopy .
- Binding energy of ${}^{7}_{\Lambda}He_{gs}$ was determined. Important input for ΛN CSB potential. Excited state of ${}^{7}_{\Lambda}He$ was clearly observed.
- New data on ¹⁰ Be was obtained.
- ${}^{28}_{\Lambda}AI$, ${}^{52}_{\Lambda}V$ spectra are getting finalized.
- New experiment is now designed and proposed to JLab (C12-15-008).

Hypernuclear study with electrons (JLab, Mainz) and with mesons (J-PARC) should progress complimentary in timely manner.