Structure of light hypernuclei in the framework of Fermionic Molecular Dynamics

Martin Schäfer, Jiří Mareš

Nuclear Physics Institute, Řež, Czech Republic

H. Feldmeier, T. Neff

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

The 12th International Conference on Hypernuclear and Strange Particle Physics, Tohoku University, Sendai, Japan

Introduction

Main goal

Study of light hypernuclei

- information about the ΛN (BB) interaction
- modification of the nuclear core
- cluster vs. shell nuclear structure
- Charge Symmetry Breaking (CSB) effects
- $\Lambda N \Sigma N$ mixing
- 3-body YNN forces (neutron star structure)

The present work

- study of light hypernuclei within Fermionic Molecular Dynamics
- calculations of the ground and excited states of $^4_\Lambda H,~^4_\Lambda He,~^5_\Lambda He,$ and $^7_\Lambda Li$
- $\bullet~V_{\Lambda N}$ and V_{NN} potential model dependence
- cluster structure

Fermionic Molecular Dynamics

(H. Feldmeier, Nucl. Phys. A 515 (1990) 147) (T. Neff, H. Feldmeier, Nucl. Phys. A 738 (2004) 367)

system of interacting fermions described by an antisymmetrized many-body state $|Q\rangle$

Antisymmetrization

• many-body wave function approximated by a Slater determinant

spatial part of a single-particle state represented by a Gaussian wave packet

$$\langle ec{x} \mid q_k
angle = \exp\left(-rac{(ec{x} - ec{b}_k)^2}{2a_k}
ight) \otimes \left|\chi_k^{\uparrow}, \chi_k^{\downarrow}
ight\rangle \otimes |t
angle$$

FMD model

Minimization

Hamiltonian

$$\hat{H}=\hat{T}_{N}+\hat{T}_{\Lambda}+\hat{V}_{NN}+\hat{V}_{\Lambda N}-\hat{T}_{ ext{cm}}$$

Binding energy

$$E_{\mathrm{B}} = \min_{q_{1},...,q_{n}} rac{\langle Q | \hat{H} | Q
angle}{\langle Q | Q
angle}$$

under conditions

 $<\hat{\bm{X}}_{
m cm}>^2=0,~<\hat{\bm{P}}_{
m cm}>^2=0,~Re(a_k)>0$

• single-particle state parameters $q_k = \{a_k, \vec{b}_k, \chi_k^{\uparrow}, \chi_k^{\downarrow}\}$

Result

- minimization yields an intrinsic state which is not parity and total angular momentum eigenstate J^π
- broken symmetries have to be restored

Projection techniques (T. Neff, H. Feldmeier, Eur. Phys. J 156 (2008) 69)

Projections

Parity projection

$$\hat{P}^{\pi}=\frac{1}{2}(\hat{1}+\pi\hat{\Pi})$$

Total angular momentum projection

$$\hat{P}^{J}_{MK} = rac{2J+1}{8\pi^2}\int d\Omega D^{J\,\star}_{MK}(\Omega)\hat{R}(\Omega)$$

Eigenstates

• total angular momentum and parity eigenstates are projected out of the minimized intrinsic state

$$\ket{Q;J^{\pi}MK}=\hat{P}_{MK}^{J}\hat{P}^{\pi}\ket{Q}$$

K-mixing

Orthogonal eigenstates

$$|Q; J^{\pi}M\kappa\rangle = \sum_{\kappa} |Q; J^{\pi}M\kappa\rangle C_{\kappa}^{J^{\pi}\kappa}$$

Generalized eigenvalue problem

$$\hat{H} | Q; J^{\pi} M \kappa \rangle = \boldsymbol{E}^{J^{\pi} \kappa} | Q; J^{\pi} M \kappa \rangle$$

• diagonalization of the \hat{H} in a subspace spanned by the projected states $|Q; J^{\pi}M\kappa\rangle$

$$\sum_{K'} H_{K,K'}^{J^{\pi}} C_{K}^{J^{\pi}\kappa} = E^{J^{\pi}\kappa} \sum_{K''} N_{K,K''}^{J^{\pi}\kappa} C_{K}^{J^{\pi}\kappa}$$
$$H_{K,K'}^{J^{\pi}} = \langle Q | \hat{H} \hat{P}_{KK'}^{J} \hat{P}^{\pi} | Q \rangle$$
$$N_{KK'}^{J^{\pi}} = \langle Q | \hat{P}_{KK'}^{J} \hat{P}^{\pi} | Q \rangle$$

V_{NN} and $V_{\Lambda N}$ potential input

NN two-body potentials

- V2-M0.0, V2-M0.6 (A. Volkov, Nucl. Phys. 74 (1965) 33)
- MTV (UCOM modified*)

(R. Malfliet, J. Tjon, Nucl. Phys. A 127 (1969) 161)

- ATS3M (UCOM modified*)
 - (I. Afnan, Y. Tang, Phys. Rev. 175 (1968) 1337)

* UCOM (H. Feldmeier, T. Neff, R. Roth, J.Schnack, Nucl. Phys. A 632 (1998) 61)

ΛN two-body potential

- G-matrix transformed YNG (Jülich JA, JB, Nijmegen ND, NF, NS)
- k_F dependence (Y.Yamamoto et. al, PTP Suppl. 117 (1994) 361)

$$V_{\Lambda N}(r) = \sum_{i}^{3} (a_i + b_i k_F + c_i k_F^2) \exp\left\{-\frac{r^2}{\beta_i^2}
ight\}$$

$V_{\Lambda N}$ potential model dependence

Substantial difference between A separation energies as well as $|B_{\Lambda}(0^+) - B_{\Lambda}(1^+)|$ for various $V_{\Lambda N}$

Fermi momentum k_F dependence in $V_{\Lambda N}$

• value of $k_{\rm F}$ reflects the nuclear medium surrounding the Λ hyperon

 $k_{\rm F}=0.8~{\rm fm}^{-1}$ (Y.Yamamoto et al, PTP Suppl. 117 (1994) 361), $k_{\rm F}=0.763~{\rm fm}^{-1}$ ($^3{\rm He}$ rms radius approximation), and $k_{\rm F}=0.72~{\rm fm}^{-1}$ (test value)

Strong Fermi momentum dependence in the $V_{\Lambda N}$ part (k_F acts as a scaling factor)

${}^{4}_{\Lambda}$ He and ${}^{4}_{\Lambda}$ H

B_{Λ} differences of the ${}^{4}_{\Lambda}He$ and ${}^{4}_{\Lambda}H$ mirror hypernuclei

Coulomb interaction included

$B_{\Lambda}(^{4}_{\Lambda}He) - B_{\Lambda}(^{4}_{\Lambda}H)$	$\mathrm{V}_{\mathrm{NN}}\text{-}MTV$	$\mathrm{V_{NN}} ext{-}ATS3M$	exp
0 ⁺ [MeV]	-0.012	-0.032	0.35
1^+ [MeV]	-0.007	0.013	0.24
${ m V}_{\Lambda { m N}}$ - NF (${ m k}_{ m F}=0.763~{ m fm}^{-1}$)			

• opposite shift between the B_{Λ} spectra of the mirror hypernuclei ${}_{\Lambda}^{4}H$ and ${}^{4}_{\Lambda}$ He to that observed \rightarrow missing $\Lambda N - \Sigma N$ mixing (R. H. Dalitz, F. Von Hippel, Phys. Rev. Lett. 10 (1964) 153)

Results

p-shell hypernucleus $^{7}_{\Lambda}$ Li

Energy levels in ${}^{6}\mathrm{Li}$

Considerable inconsistency between calculated and experimentally measured excitation spectra – attributed to the rather simple ATS3M potential (no LS interaction)

Results

p-shell hypernucleus $^{7}_{\Lambda}$ Li

Energy levels in $^{7}_{\Lambda}$ Li

Considerable inconsistency between calculated and experimentally measured excitation spectra – attributed to the rather simple V_{NN} potential

Cluster structure: s-shell hypernucleus $^4_{\Lambda}{ m He}$

Findings

- after variation, the Λ hyperon is located very close to the center of nuclear core
- modifications of compact nuclear core (³H, ³He, and ⁴He) in ${}^{4}_{\Lambda}$ H, ⁴_{\Lambda}He, and ⁵_{\Lambda}He due to the presence of Λ are negligible

Cluster structure: p-shell hypernucleus $^7_{\Lambda}Li$

Findings

- clear evidence of the internal α + d cluster structure of the ⁶Li nuclear core
- after variation, the Λ hyperon is located in the middle between the α and d clusters
- Λ hyperon pulls the α and d cluster closer together

 $R_{\rm T}^{g.s.}(^{6}{
m Li}) = 2.049 \,\,{
m fm}$

 $R_{ ext{core}}^{g.s.}({}^7_{\Lambda} ext{Li}) = 1.929 ext{ fm}$

 $\Delta R_{
m core}(^7_\Lambda{
m Li}) = -0.120$ fm

 confirmation of the "glue-like" role of the Λ hyperon (H. Tamura et al, Nucl. Phys. A 670 (2000) 249)

Conclusions

In this work :

- FMD for hypernuclei developed
 - calculations of s-shell hypernuclei $^4_\Lambda H,\,^4_\Lambda He,$ and $^5_\Lambda He$ and the p-shell hypernucleus $^7_\Lambda Li$
 - substantial difference between various $V_{\Lambda N}$ potential models
 - strong $k_{\rm F}$ dependence $(k_{\rm F} ~ {\rm acts} ~ {\rm as} ~ {\rm a} ~ {\rm scaling} ~ {\rm parameter} ~ {\rm of} ~ YNG ~ V_{\Lambda N}$ potentials)
 - opposite shift between the B_{Λ} spectra of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He \rightarrow missing $\Lambda N - \Sigma N$ mixing
 - the nuclear core modifications in s-shell hypernuclei are negligible
 - $\bullet\,$ confirmation of the "glue-like" role of the Λ hyperon in $^7_\Lambda {\rm Li}$

Next steps :

- calculations of heavier p-shell hypernuclei
- more sophisticated interactions (Argonne V18, $V_{\Lambda N}$ potentials with
 - $\Lambda-\Sigma$ mixing, chiral V_{NN} and $\mathrm{V}_{\Lambda\mathrm{N}}$ potentials)
- ΛΛ hypernuclei
- 3-body YNN forces (neutron star structure)

Backup

Variational parameters

Single-particle wave function

$$\langle ec{x} \mid oldsymbol{q}_k
angle = \exp\left(-rac{(ec{x}-ec{b}_k)^2}{2oldsymbol{a}_k}
ight) \otimes \left|\chi_k^{\uparrow},\chi_k^{\downarrow}
ight
angle \otimes |t
angle$$

Spatial part

Complex width

• $a_k = \operatorname{Re}(a_k) + \operatorname{iIm}(a_k)$

Complex vector parameter \vec{b}_k

position and velocity

•
$$\vec{b}_k = (b_{k1}, b_{k2}, b_{k3})$$

• 8 real parameters

Position, momentum, and the spread

Spin part parameters

the most general form ensures a rotation of an arbitrary angle

$$\begin{vmatrix} \chi_k^{\uparrow}, \chi_k^{\downarrow} \end{vmatrix} = \begin{pmatrix} \operatorname{Re}(\chi_k^{\uparrow}) + \operatorname{iIm}(\chi_k^{\uparrow}) \\ \operatorname{Re}(\chi_k^{\downarrow}) + \operatorname{iIm}(\chi_k^{\downarrow}) \end{pmatrix}$$

4 real parameters

$$ec{r}=rac{ ext{Re}(a) ext{Re}(ec{b})+ ext{Im}(a) ext{Im}(ec{b})}{ ext{Re}(a)}$$
 $ec{p}=rac{ ext{Im}(ec{b})}{ ext{Re}(a)}$ $(\Delta r)^2=3rac{ ext{Re}(a)^2+ ext{Im}(a)^2}{2 ext{Re}(a)}$

Parity projection before variation

 $\mathrm{V} \rightarrow$ variation using basic FMD trial state $| \textit{Q} \rangle$

 $VAP^+ \rightarrow variation$ using the even parity projected trial state $|Q; +\rangle = \frac{1}{2} \left(|Q\rangle + \hat{\Pi} |Q\rangle \right)$

The $V\!AP^\pi$ with the parity coinciding with the parity of the ground or excited states provides better description of the variated system

Fermi momentum k_F dependence in ${}^5_{\Lambda}He$

V_{NN} potential model dependence

A separation energy (B_Λ) slightly changes with various $V_{\rm NN}$ potential models

Energy levels in ⁶Li

Energy levels for UCOM modified Argonne v18 $V_{\rm NN}$ potential

(R. Roth, T. Neff, H. Feldmeier, Prog. Nuc. Phys. 65 (2010) 50)

Consistency between calculated and experimentally measured excitation spectra in $^{6}\mathrm{Li}$ for more sophisticated Argonne v18 V_{NN} potential – especially **LS** interaction included