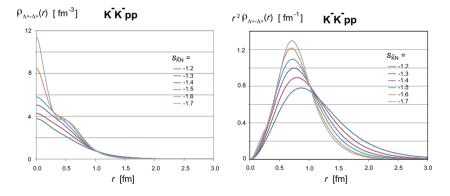
Strong binding and shrinkage of double K nuclear system K^-K^-pp predicted by Faddeev-Yakubovsky calculations


S. Maeda¹, Y. Akaishi², T. Yamazaki^{2,3}

¹Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan

²RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan

³Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Comprehensive non-relativistic Faddeev and Faddeev-Yakubovsky calculations were made for K^-pp, K^-ppn, K^-K^-p and K^-K^-pp kaonic nuclear clusters, where the quasi bound states were treated as bound states by employing real separable potential models for the K^{-} - K^{-} and the K^{-} -nucleon interactions as well as for the nucleon-nucleon interaction [1]. The binding energies and spatial shrinkages of these states were obtained for various values of the $\bar{K}N$ interaction parameters $(s_{\bar{K}N}(I=0))$, and were found to increase rapidly with the KN attraction strength. Using the $\Lambda(1405)$ ($\equiv \Lambda^*$) ansatz with a PDG mass of 1405 MeV/ c^2 for $K^{-}p$ ($s_{\bar{K}N}(I=0) = -1.37$), the ground-state binding energies of 51.5 MeV ($K^{-}pp$), 69 MeV (K^-ppn) , 30.4 MeV (K^-K^-p) and 93 MeV (K^-K^-pp) were obtained, showing good agreements with previous coupled-channel calculations [2]. The K^-K^-pp state has a significantly increased density where the two nucleons are located very close to each other, in spite of the short-range NN repulsion, leading to a growth of significantly high nuclear density region in the center of this double K-nucleus. The fact that the recently observed binding energy of $K^{-}pp$ [3, 4] is much larger (by a factor of 2) than the originally predicted ones is interpreted based on "clearing QCD vacuum" model of Brown, Kubodera and Rho [5], as due to the significant shrinkage of the \bar{K} -nuclei. Fig. 1 shows the distance distribution between two Λ^* clusters $\rho_{\Lambda^*\Lambda^*}(r)$ calculated from the obtained K^-K^-pp wave function, for various values of $s_{\bar{K}N}(I=0) = -1.2$ to -1.7.

References

- [1] S. Maeda, Y. Akaishi and T. Yamazaki, Proc. Jpn. Acad. Ser. B 89, 418-437 (2013).
- [2] T. Yamazaki and Y. Akaishi, Phys. Lett. B 535, 70-76 (2002).
- [3] T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010).
- [4] Y. Ichikawa et al., Prog. Theor. Exp. Phys. 021D01 (2015).
- [5] G.E. Brown, K. Kubodera and M. Rho, Phys. Lett. B 192, 273-278 (1987).