Variational approach to neutron star matter with hyperons

H. Togashi (RIKEN)

E. Hiyama (RIKEN), Y. Yamamoto (RIKEN), M. Takano (Waseda University)

Outline

1: Introduction
2: Variational method for hyperonic nuclear matter
3: Application to neutron stars
4: Summary

HYP2015 @ Sendai, Japan, September 8, 2015
HYPERON PUZZLE

- Nuclear equation of state (EOS) becomes softer due to the hyperon mixing.
- Maximum mass of neutron star tends to be lower than the observational data.

The hyperon mixing in neutron stars has been studied with various nuclear theories.

- Brueckner-Hartree-Fock theory (H. Schulze, T. Rijken, PRC 84 (2011) 035801)
- Variational many-body theory (D. Lonardoni et al., PRL 114 (2015) 092301)
Our Variational Many-Body Theory

We have constructed the nuclear EOS for core-collapse supernovae with the variational method.

Collaboration with M. Takano (Waseda University), K. Sumiyoshi (Numazu College of Tech.), Y. Takehara, S. Yamamuro, K. Nakazato, H. Suzuki (Tokyo Univ. of Science)

Method: Cluster variational method
Potential: AV18 + U1X

Cold and Hot Asymmetric Nuclear Matter for arbitrary particle fractions

Energies of uniform matter

Application to Neutron Star

Application to Supernova simulation

It is relatively easy to extend our simple variational method to calculate the EOS of hyperonic nuclear matter.
Our Variational Many-Body Theory

We construct the EOS of nuclear matter containing Λ and Σ^{-} hyperons starting from bare baryon interactions by the cluster variational method.

It is relatively easy to extend our simple variational method to calculate the EOS of hyperonic nuclear matter.
Two-body Hamiltonian

$$H_2 = -\sum_i \left[m_i c^2 + \frac{\hbar^2}{2m_i} \nabla_i^2 \right] + \sum_{i<j} V_{ij}$$

Two-body potential

$$V_{ij} = \sum_{N,Y} [V_{ij}^{NN} + V_{ij}^{YN} + V_{ij}^{YY}]$$

Three-body Hamiltonian

$$H_3 = \sum_{i<j<k} V_{ijk}$$

Three-nucleon potential: UIX

- **NN** potential: **AV18 two-body potential** (PRC 51 (1995) 38)
- **YN** and **YY** potentials: **Central three-range Gaussian potentials**
 - **ΛN interaction** (E. Hiyama et al., PRC 74 (2006) 054312)
 - **ΛΛ interaction** (E. Hiyama et al., PRC 66 (2002) 024007)
 - The *ab initio* variational calculations for Λ hypernuclei reproduce their experimental eigenvalues.

Σ^-N interaction: Based on the latest version of the Nijmegen model ESC08.
ΛΛ interaction

- ΛΛ interaction is constructed so as to reproduce the experimental ΛΛ binding energy given by the NAGARA event.

(E. Hiyama et al., PRC 66 (2002) 024007)

- Two Λs in the experimentally known double Λ hypernuclei are in the relative s orbit.

→ We determine only the even-state part of the ΛΛ interaction!

\[\Lambda \Lambda \text{He} \]

\[l = s \text{ wave} \]

The experimental data on hypernuclei give no information on the odd-state part of the ΛΛ interactions.
The odd-state part of the $\Lambda\Lambda$ interaction

We prepare **four different models** for the odd-state part of the $\Lambda\Lambda$ interaction.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>The most attractive</td>
</tr>
<tr>
<td>Type 2</td>
<td>Less attractive</td>
</tr>
<tr>
<td>Type 3</td>
<td>Slightly repulsive</td>
</tr>
<tr>
<td>Type 4</td>
<td>The most repulsive</td>
</tr>
</tbody>
</table>

The repulsion strength of Type 4 is comparable to that of the odd-state repulsion of ΛN interaction.

The repulsive effect increases monotonically from Type 1 to Type 4.

- We investigate the effects of **the odd-state part of bare $\Lambda\Lambda$ interactions** on the structure of neutron stars.
Expectation Value of H_2

Jastrow wave function

$$
\Psi = \text{Sym} \left(\prod_{i<j} f_{ij} \right) \Phi_F
$$

Φ_F: The Fermi-gas wave function

Sym []: Symmetrizer

f_{ij}: Two-body correlation function

$$
f_{ij} = \sum_{p=\pm} \sum_{\mu} \sum_{s=0}^1 \left[f_{C\mu}^{\mu}(r_{ij}) + s f_{T\mu}^{\mu}(r_{ij}) S_{Tij} + s f_{SO\mu}^{\mu}(r_{ij})(L_{ij} \cdot s) \right] P_{\mu psi j}^{\mu}
$$

Central Tensor Spin-orbit

E_2 is the expectation value of H_2 with the Jastrow wave function in the two-body cluster approximation.

$$
E_2(n_p, n_n, n_\Lambda, n_{\Sigma^-}) = \frac{\langle H_2 \rangle_2}{A} \left[f_{C\mu}^{\mu}, f_{T\mu}^{\mu}, f_{SO\mu}^{\mu} \right]
$$

n_p : Proton number density
n_n : Neutron number density
n_Λ : Λ number density
n_{Σ^-} : Σ^- number density

E_2 is minimized with respect to $f_{C\mu}^{\mu}(r), f_{T\mu}^{\mu}(r)$ and $f_{SO\mu}^{\mu}(r)$ by solving the Euler-Lagrange Equations with the appropriate constraints.
Energy per baryon

\[E(n_p, n_n, n_\Lambda, n_{\Sigma^-}) = E_2(n_p, n_n, n_\Lambda, n_{\Sigma^-}) + E_3^N \]

Three-nucleon energy \(E_3^N \)

Based on the expectation value of \(H_3 \) with the Fermi-gas wave function

(NPA902 (2013) 53)

<table>
<thead>
<tr>
<th>(n_0) [fm(^{-3})]</th>
<th>(E_0) [MeV]</th>
<th>(K) [MeV]</th>
<th>(E_{\text{sym}}) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>-16.1</td>
<td>245</td>
<td>30.0</td>
</tr>
</tbody>
</table>
3: Application to neutron stars

Mass-radius relations of neutron stars

Maximum mass of neutron stars

<table>
<thead>
<tr>
<th>Type</th>
<th>Mass (M(_\odot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>1.48 (M_\odot)</td>
</tr>
<tr>
<td>Type 2</td>
<td>1.53 (M_\odot)</td>
</tr>
<tr>
<td>Type 3</td>
<td>1.57 (M_\odot)</td>
</tr>
<tr>
<td>Type 4</td>
<td>1.62 (M_\odot)</td>
</tr>
<tr>
<td>free (Y)</td>
<td>1.31 (M_\odot)</td>
</tr>
<tr>
<td>without (Y)</td>
<td>2.22 (M_\odot)</td>
</tr>
</tbody>
</table>

The maximum mass increases.
(1.48 \(M_\odot\) → 1.62 \(M_\odot\))

J0348+0432: Science 340 (2013) 1233232

Shaded region is the observationally suggested region by Steiner et al. (Astrophys. J. 722 (2010) 33)
Composition of Neutron Star Matter

Onset density of Λ: 0.42 fm$^{-3}$

Onset density of Σ^{-}: 0.76 fm$^{-3}$ → 0.72 fm$^{-3}$ → 0.70 fm$^{-3}$ → 0.68 fm$^{-3}$
Neutron Star Matter with Three-Baryon Force

We consider a phenomenological three-baryon repulsive force (TBF) as a density dependent two-body effective potential.

Y. Yamamoto et al., PRC 90 (2014) 045805

Mass-radius relations of neutron stars (Type 4)
Composition of neutron star matter (Type 4)
We construct the EOS of nuclear matter containing Λ and Σ^- hyperons by the cluster variational method.

We investigate the effects of the odd-state $\Lambda\Lambda$ interactions on the structure of neutron stars.

- The repulsion in the odd-state $\Lambda\Lambda$ interaction raises the maximum mass of neutron star. ($1.48 \, M_\odot \rightarrow 1.62 \, M_\odot$)
- The onset density of Σ^- strongly depends on the odd-state $\Lambda\Lambda$ interaction.
- Maximum mass of neutron stars with TBF is consistent with the observational data.

Future Plans

- Taking into account mixing of other hyperons ($\Sigma^0, \Sigma^+, \Xi^0, \Xi^-$)
- Hyperon EOS at finite temperatures
- Employing more sophisticated baryon interactions (e.g. Nijmegen)