

Strangness production in p+p interactions at 20, 31, 40, 80 and 158 GeV/c from NA61/SHINE at the CERN SPS

Szymon Puławski for the NA61/SHINE Collaboration

University of Silesia, Katowice

September 2015

NA61/SHINE detector system

NA61/SHINE strong interactions program

Results on p+p interactions

• Data analyzed:

- p+p @ 20 GeV/c ($\sqrt{s} = 6.2$ GeV): 1.3 · 10⁶ events
- p+p @ 31 GeV/c ($\sqrt{s} = 7.7$ GeV): 3.1 · 10⁶ events
- p+p @ 40 GeV/c ($\sqrt{s} = 8.8$ GeV): 5.2 · 10⁶ events
- p+p @ 80 GeV/c ($\sqrt{s} = 12.3$ GeV): 4.3 · 10⁶ events
- p+p @ 158 GeV/c (\sqrt{s} = 17.3 GeV): 3.5 \cdot 10 6 events
- Results presented for hadrons produced in inelastic p+p collisions.
- Particle spectra:
 - $\bullet~dE/dx,~tof-dE/dx~and~V^0$ identifications.
 - The results are corrected for particles from weak decays (feed-down) and detector effects using Monte-Carlo models.
 - Out of target interactions are subtracted using events recorded with empty target.

Particle spectra

 $31 \ GeV/c$

Transverse mass spectra are approximately exponential in p+p interactions. In central Pb+Pb collisions the exponential dependence is modified by the transverse flow.

Kaon at mid-rapidity

• Spectra fitted by:

$$\frac{d^2 n}{d p_T d y} = \frac{S p_T}{T^2 + m_K T} \exp\left(-\frac{\sqrt{p_T^2 + m_K^2} - m_K}{T}\right).$$

- Fit allows to calculate:
 - The inverse slope parameter T.
 - Kaon multiplicity in p_T range not accessible by data.

Inverse slope parameter T - Step

 In p+p collisions energy dependence of inverse slope parameter T of kaon exhibits rapid changes like in Pb+Pb interactions.

> Phys.Rev. C69 (2004) 044903, STAR: Phys.Rev.C79:034909,2009; ALICE: PLB 736 (2014) 196-207, Eur. Phys. J , C (2011) 71:1655

• A shadow of the horn structure is visible in p+p reactions but significantly reduced.

Z.Phys. C65 (1995) 215-223 (π), Z.Phys. C71 (1996) 55-64 (K); BRAHMS: Phys.Rev.C72:014908,2005; ALICE: Eur. Phys. J , C (2011) 71:1655, PRL 109, 252301 (2012)

$\frac{K}{\pi}$ ratio in p+p interactions - comparison to models

- Models do not describe well NA61/SHINE data on p+p interactions.
- High precision NA61/SHINE data allow for their significant improvement.

Vovchenko et al., PRC 90, 024916 (2014), and private communication. Gavin Salam private communication UrQMD: Prog. Part. Nucl. Phys. 41 (1998), J. Phys. G: Nucl. Part. Phys. 25 (1999); HSD: Nucl. Phys. A 602, 449 (1996), Nucl. Phys. A 644, 107 (1998), Phys. Rept. 308, 65 (1999); EPOS: Nucl.Phys.Proc.Suppl.196,2009, PYTHIA: arXiv:1410.3012

Rapidity spectra and mean kaons multiplicities

A spectra in p+p at 158 GeV/c

A spectra in p+p at 158 GeV/c

• $z = y/y_{beam}$

• Extrapolation to the full phase space by function:

$$\frac{1}{\langle n \rangle} \frac{dn}{dz} = 0.369 + 2.10z^2 - 2.69z^4$$

- NA61/SHINE results are consistent with world data
- Other NA61/SHINE energies work in progress

- p+p data is unexpectedly interesting.
- Even in p+p the energy dependence of K^+/π^+ and inverse slope parameter T exhibits rapid changes in the SPS energy range.
- Do we see onset of deconfinement in p+p interactions?
- High precision NA61/SHINE data presents a challenges for models and should allow their improvement.

Backup

Kaons spectra

Comparison with NA49 p+p results

Analysis comparison

Transverse mass spectra are approximately exponential in p+p interactions. In central Pb+Pb collisions the exponential dependence is modified by the transverse flow.

fitted by Blast Wave Model:

$$\frac{dN_i}{m_T dm_T dy} = A_i m_T \kappa_1 \left(\frac{m_T \cosh \rho}{T}\right) l_0 \left(\frac{p_T \sinh \rho}{T}\right)$$
(1)

from Schnedermann, Sollfrank, Heinz, PRC 48, 2462 (1993)

Dip in ISR energies

Figure 117: $\langle p_T \rangle_{x_F}$ at $x_F = 0$ and $\langle p_T \rangle_y$ at y = 0 as a function of \sqrt{s} for different values of the upper integration limit from 2 to 6 GeV/c

Figure 4: (Color online) Energy dependence of the inverse slope parameter T of transvesse mass spectra of K_{n}^{0} . K^{+} and K^{+} mesors prediced in p+p and $p+\bar{p}$ interactions. The T parameter was determined by fitting the spectra (Eq. 1) in the whole analyzed w_{p} interact, $w_{p} - w_{0} < 0.25$ GeV/c². The logarithmic parameterization is indicated by solid line.

ISR dependence of fit range

Strong interaction program

The most interesting region of the phase diagram is accessible at the SPS

• Onset of deconfinement at \cong 30A GeV ($\sqrt{s_{NN}}$ =7.6 GeV) PRC 77, 024903 (2008) • Critical point? Example: (T^{CP}, μ_{p} ^{CP}) = (162±2, 360±40) MeV JHEP 0404, 050 (2004)

Estimated (NA49) and expected (NA61) chemical freeze-out points according to PRC 73, 044905 (2006)

Comprehensive scan in the whole SPS energy range (13A-158A GeV $\Leftrightarrow \sqrt{s_{NN}}$ =5.1-17.3 GeV) with light and intermediate mass nuclei

Search for the critical point
Search for a maximum of CP
signatures: fluctuations of N, average
p_T, etc., intermittency, when system
freezes out close to CP

Study of the properties of the onset of deconfinement

Search for the onset of horn, kink, step, etc. in collisions of light nuclei

Statistical model of the early stage

Motivation: Statistical Model of the Early Stage (SMES)

Gaździcki, Gorenstein, Acta Phys. Polon. B30, 2705 (1999)

• 1st order phase transition to QGP between top AGS and top SPS energies $\sqrt{s_{_{NN}}} \approx 7 \text{ GeV}$

• number of internal degrees of freedom (*ndf*) increases $HG \rightarrow QGP$ (activation of partonic degrees of freedom)

 \bullet total entropy and total strangeness are the same before and after hadronization (cannot decrease QGP \to HG)

• mass of strangeness carriers decreases HG \rightarrow QGP (m_{A,K,...} > m_s)

constant temperature and pressure in mixed phase

main strangeness carriers

Difference in ⟨K⁺⟩ and ⟨K⁻⟩ production due to different sensitivity to baryon density. At SPS energies lambdas have significant influence on total strangeness production (anti-lambdas not) $\begin{array}{l} \Lambda \ (uds) \\ K^{+} \ (u \ anty-s) \\ K^{-} \ (anty-u \ s) \\ K^{0} \ (d \ anty-s) \\ anty-K^{0} \ (anty-d \ s) \end{array}$

 $\overline{s} \rightarrow K^+, K^0$ $s \rightarrow K^-, \overline{K}^0, \Lambda$ $\langle K^* \rangle / \langle \pi^* \rangle$ proportional to strangeness/entropy

 $\langle K^{-} \rangle / \langle \pi \rangle$ additionally sensitive to baryon density

NA49 results

E - strangeness to entropy Full phase 0.3 space (4π) Λ × 1 і Ц 0.2 õõ õõ 0.1 800 SMES - - RQMD ---- HGM ... UrOMD 10 104 $\sqrt{s_{_{NN}}}$ (GeV)

 E_s calculated from π , K and A yields in 4π . Proposed as a measure of strangeness to entropy ratio (SMES)

$\rightarrow {\rm E_s}$ shows distinct peak at 30A GeV

\rightarrow Described (predicted) only by model assuming phase transition (SMES)