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Relativistic collisions of hadrons and ions

Production of hypermatter in relativistic HI and hadron collisions
- Production of strange particles and hyperons by "participants”,

- Rescattering and absorption of hyperons by excited "spectators”,
- Coalescence of produced baryons.
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Theoretical descriptions of strangeness production within
transport codes

old models : e.g.. Z.Rudy, W.Casing et al., Z Phys.A351(1995)217
INC, OMD, BUU

GiBUU model: Th.Gaitanos, H.Lenske, U.Mosel , Phys.Lett. B663(2008)197,
(+SMM) Phys. Lett. B675(2009)297

PHSD model: E Bratkovskava, W.Cassing, ... Phys. Rev. C78(2008)034919

DCM (INC) : JINR version: K. K.Gudima et al., Nucl. Phyvs. A400(1983)173, ...
(+QGSM+SMM)  Phys. Rev. C84 (2011) 064904

UrQMD approach: S.A.Bassetal., Prog. Part. Nucl. Phys. 41 (1998)255.
M.Bleicher et al..J. Phvs.G25(1999)1859, ..., J.Steinheimer ...

Main channels for production of strangeness in individual hadron- nucleon

collisions: BB—BYK , Bni—=YK, .. (like p+n—n+A+K", and secondary meson

interactions, like t+p>A+K"). Rescattering of hyperons is important for

their capture by spectators. Expected decay of produced hyperons and
hypernuclei: 1) mesonic A—n+N ; 2) in nuclear medium nonmesonic

A+N—N+N .



Physical picture of peripheral relativistic HI collisions:

nucleons of projectile interact with nucleons of target, however, in
peripheral collisions many nucleons (spectators) are not involved. All
products of the interactions can also interact with nucleons and
between themselves. The time-space evolution of all nucleons and
produced particles can be calculated with transport models.

All strange particles: Kaons, Lambda, Sigma, X1, Omega
are included in the transport models

ABSORPTION of LAMBDA :
The residual spectator nuclei produced during the non-equilibrium
stage may capture the produced Lambda hyperons if these hyperons
are (a) inside the nuclei and (b) their energy 1s lower than the hyperon
potential in nuclear matter (~30 MeV). In the model a depletion of
the potential with reduction of number of nucleons in nucleus is taken
into account by calculating the local density of spectator nucleons.



A.S.Botvina and J.Pochodzalla, Phys. Rev.C76 (2007) 024909

Generalization of the statistical de-excitation model for nuclei with Lambda hyperons
In these reactions we expect analogy with

multifragmentation in intermediate and high energy nuclear reactions

+ nuclear matter with strangeness
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Yield of hypernuclei in peripheral collisions
A.S.Botvina, K.K.Gudima, J.Pochodzalla (PRC88, 054605, 2013)

Threshold behavior with
saturation at high energies
(for single hypernuclei)

Yield is integrated over all
impact parameters.

Reactions can be studied
at GSI/FAIR and JINR/
NICA facilities as well as
on operating RHIC and
LHC (fixed target expe-
riments).
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A.S.Botvina, K.K.Gudima, J.Steinheimer, M.Bleicher, . N.Mishustin. PRC 84 (2011) 064904

projectile residuals produced after non-equilibrium stage

total yield of residuals with single hyperons ~1% , with double ones ~0.01%,
at 2 GeV per nucleon, and considerably more at 20 GeV per nucleon
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Integrated over all impact
parameters

Formation of multi-strange
nuclear systems (H>2)
is possible!

The disintegration of
such sytems can lead
to production of

exotic hypernuclei.



Yield (per event)

Production of light hypernuclei in relativistic 1on collisions
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One can use exotic neutron-rich and neutron-poor projectiles, which are not possible to
use as targets in traditional hyper-nuclear experiments, because of their short lifetime.
Comparing yields of hypernuclei from various sources we can get info about their binding
energies and properties of hyper-matter.

A.S.Botvina, K.K.Gudima, J.Pochodzalla, PRC 88, 054605, 2013
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B. Doenigus et al., Nucl. Phys. A904-905 (2013) 547¢c

ALICE’s observation for (anti-)hypertriton

Hypertriton

Signal of the hypertriton from the 2011 run
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A.Botvina, J.Steinheimer, E.Bratkovskaya, M.Bleicher, J.Pochodzalla, PLB742(2015)7

Coalescence of Baryons (CB) Model :
Development of the coalescence for formation of clusters of all sizes
1) Relative velocities between baryons and clusters are considered,
if (JVb-VA|)<Vc the particle b is included in the A-cluster.

2) Step by step numerical approximation.

3) In addition, coordinates of baryons and clusters are considered,
if | Xb-XA|<R*A**(1/3) the particle b may be included in A-cluster.
4) Spectators’ nucleons are always included in the residues.

Combination of transport UrQMD and HSD models with CB:

Investigation of fragments/hyperfragments at all rapidities !
(connection between central and peripheral zones)
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HI collisions at intermediate energies

DCM + Coalescence
momentum: | Pi— Po | <Pc

V.Toneev, K.Gudima,
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PRELIMINARY:

UrQMD + CB model calculations:

(LHC collider) 208Pb + 208Pb at 2.76 A TeV
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dn/dy (per event

A.Botvina, J.Steinheimer, E.Bratkovskaya, M.Bleicher, J.Pochodzalla, PLB742(2015)7

normal fragments, hyper-fragments, hyper-residues
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Because of the secondary interactions the maximun of the fragments
production is shifted from the midrapidity. Secondary products have
relatively low kinetic energies, therefore, they can produce clusters
with higher probablity (even for light fragments/hyper-fragments).
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Mass distributions of produced fragments: Combining =
and Omega with nucleons may lead to exotica production
(shown, preliminary, for normal fragments only)

However, an advantage of
ultra-relativistic collisions
is the production of multi-
strange particles, which
can be captured too with
the formation of nuclear
exotics.
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Conclusions

Collisions of relativistic ions and hadrons with nuclei are promising
reactions for novel research of hypernuclei, anti-nuclei, and exotic

nuclei. These processes are theoretically confirmed with various
models.

Mechanisms of formation of hypernuclei in peripheral reactions: Strange
baryons (A, X, E, ...) produced in particle collisions can be transported to
the spectator residues and captured in nuclear matter. Another mechanism is
the coalescence of baryons leading to light clusters, including anti-matter, will
be effective at all rapidities. These exotic systems are presumably excited and
after their decay novel hypernuclei of all sizes (and isospin), including exotic
weakly-bound states, multi-strange nuclei, anti-nuclei can be produced.

Advantages over other reactions: in the spectator matter there is no limit
on sizes and isotope content of produced exotic nuclei; probability of their
formation may be high; a large strangeness can be deposited in nuclei.
Correlations (unbound states) and lifetimes can be naturally studied.
EOS of hypermatter at subnuclear density can be investigated.
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