Simulation scheme

Event generation

w/ phits or empirical generator

Geant4 simulation

w/ the Bickley's source code given by Murakami-san

digitization

w/ Actar Sim. tool

reconstruction

analysis

Original software based on Kalman

Filter

Space

point

Trac

Geometry definition

Digitization result projection of pad signal

Digitization result projection of pad signal

Space point reconstruction

- Prior to track reconstruction, reconstruction of the space point where a charged particle crossed is necessary.
- The space point reconstruction is done for each layers.
 The layer is the plane perpendicular to beam axis.
- The algorithm itself is similar with cluster finding algorithm: finding the clusters whose charge is above tuned threshold.
- No noise is added currently and threshold is tuned to be small enough to pick pion signals.
- Continue finding the 2cm(wire axis)x2cm(drift axis) charge clusters until there is no charge above threshold.
- While there might be many noise clusters, such cluster can not be used for track reconstruction and I do not take such cluster seriously.

Track reconstruction

- I use the Kalman Filter package developed for tracking at ILC experiment.
- At first, I have to make track seed (track candidate).
- Scan the all of combination of two hits: one is from nth layer and another is from n/2th layer (20<=n<=108).
- On the assumption of all of the track is from (0,0,0), one can estimate the track parameters for given seed.
- Try to find the corresponding hit which give small chi2 and reconstruct the track for given seed.
- If one track seed have more than 15 good hits, it is stored in track array.
- Currently, the used hits are no more used for other track reconstruction.

Tracking display for each layer

Colored squares: deposited charge black circles: reconstructed hit position red crosses: reconstructed track point

Tracking display for each layer

Colored squares: deposited charge black circles: reconstructed hit position red crosses: reconstructed track point

シミュレーションスタディ central collision, digitized

- イベントGenerator は原研で開発された 原子核トランスポー トシミュレーター PHITSを使用
 - JAM+JQMD
- GEANT4
- ガスのドリフト速度・拡散、エレキのsampling rateを考慮してdigitized dataをシミュレートした

このスタディをベースにパッドのデザインを進めている

粒子同定 (運動量 vs dE/dX)

- 各再構成トラックにおける運動量・エネルギー損失相関をプロット
- 粒子高多重度イベントでパイオンIDが難しくなっている
- パイオン領域のS/Nを一つの指標にしてパッドデザイン の変更を検討している

シングルトラック

運動量(MeV)

Sn+Snミニマムバイアス

運動量(MeV)