A New Physics Opportunity at RHIC with the sPHENIX experiment

Ming X. Liu Los Alamos National Laboratory

Many discussions with Y. Akiba, M. McCumber, Y. Kwon, C. da Silva, J. Huang, I. Nakagawa, M. Brooks, J. Kapustinsky and other sPHENIX collaborators

Outline

- Selected physics topics of the future sPHENIX
 - 15 years of RHIC operation, A+A, p/d+A, p+p
 - QGP physics at RHIC in the next decade
- Experimental challenges and prospects
 - Jet/Heavy quark measurements
 - Heavy quarkonia measurements
 - Importance of precision tracking
- Possible tracking detector options for sPHENIX
 - Si-strip sensors with FPHX readout (used by PHENIX FVTX)
 - Precision tracking
 - Hadron PID with dE/dx?
 - MAPS pixel detectors R&D
 - Thickness ~50um, pixel ~O(30um x 30 um)
 - Cost effective?
 - Opportunity to collaborate with Korean universities

Recreate a State of Matter/QGP of the Early Universe in Heavy Ion Collisions

Heavy Collisions @RHIC

Color screening, parton dE/dx and QGP properties

Two Major Discoveries at RHIC (LHC)

$$R_{AA} = \frac{\sigma^{A+A}}{\langle N_{collisions} \rangle \cdot \sigma^{p+p}}$$

- High pT jet suppression
 - Parton energy loss
 - LHC expanded the pT range

- Suppression
- Recombination

N_D

Ming X Liu, Los Alamos

Discovery Science 15+ Years of RHIC Experiments

- RHIC runs 2001-2015
 - Discovery of perfect liquid QGP
 - Cold Nuclear Matter effects in p/d+A
 - The polarized proton structure and spin dynamics in QCD
- Great progress in accelerator performance
 - Extended our physics reach
- Super-PHENIX(sPHENIX) is conceived as a second generation experiment
 - Building upon what has been learned at RHIC and LHC
 - Taking advantage of latest technologies
 - Serving as a Day-1 detector for the future Electron-Ion-Collider (EIC)

BNL Plan – Berndt Mueller's Talk @sPHENIX Workshop 6/2015 Proposed run schedule for RHIC

	Years	Beam Species and	Science Goals	New Systems
	2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
	2015-16	p ݨ +p ݨ at 200 GeV p ݨ +Au, p ݨ +Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
	2017	p [‡] +p [‡] at 510 GeV	Transverse spin physics Sign change in Sivers function	
	2018	No Run		Low energy e-cooling install. STAR iTPC upgrade
	2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
sPH	2021-22	Au+Au at 200 GeV pî+pî, pî+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
	≥ 2023 ?	No Runs		Transition to eRHIC
				BROOKHEVI

NATIONAL LABO

sPHENIX: Precision Study of QGP A first step toward the next generation experiments

+ Nuclear Structure via p+{p,A}

Nuclear Structure via e+{p,A}

Goal of sPHENIX Program

A new precision study QGP properties over a wide range of length scale and temperatures

A new experimental tool to study QGP with the following probes

- Light and heavy quark jets
- Upsilon states

QGP color screening and suppression

9

Why Jets at RHIC?

• Access QGP properties/soft physics with hard probes

Jet Modification in QGP

Jet evolution probed by RHIC and LHC

0.9

A New Tool: B-jets in Heavy Ion Collisions

- Mass dependent of dE/dX
 - Radiation vs collisional energy loss
 - "dead cone effects"
- Precision tracking required!
 - Displaced 2nd vertex identification

 $\Delta E_q > \Delta E_{u,d} > \Delta E_c > \Delta E_b$

slower bottom quarks

faster bottom quarks

More on B-Jets: RHIC vs LHC

- **B-Jet suppressions**
 - High pT B-jets behave like light jets
 - Low pT B-jets most sensitive to quark masseffects, pT $\sim O(M_{\rm B})$

b-jet p_ (GeV)

Quarkonia as a QGP thermometer

Must have: p+p, p+A and A+A

Ming X Liu, Los Alamos

Upsilon States at RHIC

- Minimal "recombination" at RHIC
- Optimal "temperature range"
- Similar Stat. in p+p and p+A, good references

Reference Design and Requirements

- $|\eta| < 1.1$ and $\Delta \phi = 2\pi$
- High efficiency in central Au+Au to measure modified Jet FF
- High momentum resolution to separate Upsilon states ($\sigma_M < 100 MeV$)
- Precision vertex measurement for heavy flavor measurements (D, B→J/ Psi, b-tagged jets)
- High DAQ rate (~15kHz)

A collider detector!

sPHENIX Detector Calorimeters

- Common Silicon Photomultiplier (SiPM) readout for Calorimeters
- Full clock speed digitizers, digital information for triggering
- High data acquisition rate capability, ~ 15 kHz
 1-year RHIC run = massive 600B events, no trigger bias

HCal and EMCal Status

- Well under development
 - Prototypes developed and beam tested!

Si-Strip Based Tracking System A New Conceptual Design with FPHX Readout

EMCAL

In the MIE, the outer radius is enlarged to 80cm to achieve Upsilon resolution of less than 100MeV if the radiation length of S1ab is 2%. If we can reduce the radiation length to be less than 1.5% (FPHX air cooled), this 60cm radius version should have the same Upsilon resolution.

MIE Reference Design & Performance

The overall tracker mass is $X/X_0 = 9.3\%$. We think it is conservative.

• This 7 layer baseline design was implemented in

2 pixel layers + 5 outer tracking layers

- Simulation shows that this design can separate the three Upsilon states
- Much room for design optimization (performance, cost, etc)
 - FPHX readout could significantly reduce the material, thus R2: 80 -> 60 cm

A. Frawley DOE review 2015/04/30

The PHENIX Forward Vertex Detector (FVTX)

successful operation since 2012

FPHX Readout Option

- AC coupled
 - Low noise and stable pedestal
- Low power consumption (~20% SVX4, original design)
 - Air cooling, less materials
- Push-through readout
 - High speed readout, 4 hits/4BCO
 - Triggering capability (FVTX multiplicity trigger for e.g.)
- Signal amplitude available
 - 3-bit ADC (5-bit possible)
 - 128 channels per chip
- Extensive good experience with the successful FVTX upgrade in PHENIX
 - ROC, FEM

Concept of FPHX Based Module

A. Akiba

ROC of 10 FPHX chip

ROC of 10 FPHX chip

One FPHX reads out 6 cells

- Take advantage of existing FVTX readout system
 - Sensor of (12 x 10) cell
 structure. Each cell has 128ch
 of 75 um x 9.6mm strips
 - A "ROC" (or "HDI") of 10 FPHX chips. They are attached at the top and the bottom of the sensor
 - The "ROC" is electrically equivalent to the "small HDI" of FVTX so that it can be read-out by a FVTX ROC

3 Types of Sensors

A. Akiba

S2 sensor

S1 sensor Bonding pads for 10 FPHXs

Bonding pads for 10 FPHXs

Bonding pads for 10 FPHXs

SO sensor

Bonding pads for 10 FPHXs

Sensor thickness= 320 um (or 240?)

Bonding pads for 10 FPHXs

- If tracker use FPHX chip, one "cell" of the sensor becomes 9.6mm wide (to read-out by 9mm long FPHX chip).
- One edge of the sensor is read-out by a "ROC" (or HDI in FVTX terminology) of 10 FPHX chip.
- 10 FPHX chip "ROC" is electrically equivalent to the small FVTX HDI

10/16/15

Hadron PID with dE/dx?

- FPHX provide dE/dx information
 - FVTX: 3-bit ADC
 - 5-bit possible
- Charged pi/K/p identification at low pT
 - Jet energy loss and fragmentation
 - Where do the lost energy go? Low-z tracks!
 - CMS jet results
 - PID for pT <~ 2GeV
- Prefer thick sensors
 - 500um? (Korean Institutes)
 - Developed for MPC-EX

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Most probable energy loss in Si-sensor Normalized to MIP

MIP dE/dx (PPG)

10/16/15

GEAN4 Simulations with 300um Sensors 1GeV proton vs muon: ~2 sigma separation

Silicon Sensor Work in Korea

- Provided 500um thick sensors to PHENIX MPC-EX project
 - Excellent work!
- Thick sensors can be used for the S2 outer layer for optimal dE/dx measurements
 - Multiple scattering is not a concern for tracking
- Possible joint effort on Si-Tracker: 2016 2020
 - Japan/RIKEN
 - S0 and S1 layers (320um or 240um sensor)
 - Korea
 - S2 outer layer (500um sensor)
 - US/LANL
 - FPHX, ROC and FEM etc, following FVTX designs

FPHX Based Silicon-Strip Tracker Summary

• FPHX chip for read-out.

- FPHX is the read-out chip of FVTX
- 128ch/chip. 3bit ADC /ch.
- Low power (64mw per chip)

• 5 strip layers + 2 pixel (more options later)

S2: 1 strip layer at R~60 cm ~1% X0 (2% in ref. design)
S1ab: 2 strip layer at R~34 cm ~1% X0 total (2% in ref. design)
S0ab: 2 strip layer at R~ 8 cm ~1% X0 total (2.7% in ref. design)
P1: pixel at R~5 cm (reconfigured VTXP) 1.3% X0
P0: pixel at R~2.5cm (reconfigured VTXP) 1.3% X0

- All strips are 75 μ m x 9.6mm. S0b has a small stereo angle.
- Overall material is ~5.6% radiation length.
- Air cooling to achieve small radiation length
- Small rad. length enables smaller over-all size and to keep the required momentum resolution to separate 3 Upsilon states
- S0+S1+S2: ~8m² of silicon and 3.2M ch

Proven technology !

Cost: O(US \$10M)

B-jet Physics in Heavy Ion Collisions

- Precision tracking required!
 - DCA based algorithm
 - 2nd vertex based algorithm

MAPS Based Inner Vertex Detectors ALICE ITS Upgrade

Inner Silicon Concept:

- Thin, fine pitch (<30 um), large efficiency
- Optimizations for material thickness
- Fast readout possible , 4uS readout

Goal:

- Precision tracking & vertexing for b-jet identification
- and other tracking duties

MAPS + Si-Strip Tracker

Inner Tracking: MAPS 80 - High precision IP 60 beam view - Precision DCA, 2nd vertexing 2~3 layers of MAPS - R < 10/20 cm20 o [cm] Outer Tracking: Si-Strips --20 Momentum resolution for Upsilons Patter recognition in central HI -40 collisions -60 FPHX readout -80 - 10/20 cm < R < 80 cm60 80 -80 20 40 East x [cm] West

1 cm

90

MAPS Work in Korea possible collaboration

- Production test facility in Korea
- Full production in Korea?

- Possible collaboration with ALICE to produce more sensor/chips for sPHENIX inner tracking system
 - Cost effective ~ \$400K for ~10m^2
 - Korea+LANL+...

250

200

150

300

350

Physics Impact

Large statistics and new observables equals:

- (1) Additional physics reach
- (2) New differential measurements

Leading to a greater understanding of the energy loss and QGP structure.

New RHIC program will both:

(1) Complement LHC measurements where medium differences can be directly studies(2) Extend kinematic reach to lower energy, more heavily modified jets

Future: sPHENIX evolves into Electron Ion Collider detector.

0^L 0

50

100

Summary and Outlook

• Great potential Korean universities to make major contributions to sPHENIX program

+ Nuclear Structure via p+{p,A}

Nuclear Structure via e+{p,A}

Backup slides

Light, Charm and Bottom Quarks in QGP

Energy loss:

- heavy quark radiation
- elastic collisions
- D,B meson dissociation in QGP which depends on different time formations
- strong dependence with unknown QGP properties

Some models which describe $R_{AA}(\pi)^{\sim}R_{AA}(charm)$ suggest a different nuclear modification for charm and bottom yields.

LANL Theoretical Division effort

10/16/15

Si-Strip Detector Design Issues

- The momentum resolution, in particular at lower pT, is limited by the multiple scattering. Minimizing the radiation length of this layer is one of most important issue
- The majority of the radiation length is from "stave" which provide mechanical support and cooling
- To achieve small radiation length, air cooling of S1 layer is desirable
- The current design assume SVX4 readout, since PHENIX had so far used this chip for two projects (stripixel and MPC-EX). A drawback of SVX4 is that it generates a relatively large amount of heat (~0.4 watt per chip = 128ch). It is unclear if air cooling is possible.
- FPHX chip used FVTX generates only 20 % of heat of SVX4. FPHX 64mW/chip, SVX4 300mW/chip (both 128ch)
- We have done no engineering on this issue. We need thermal and mechancial design of stave to evaluate the feasibility of air cooling of either SVX4 or FPHX (or other) solution.

FVTX in PHENIX

OS

FVTX Geometrical Design

Four tracking stations with full azimuthal coverage

- 75 μm pitch strips in radial direction, 3.75° staggered phi strips
- Radiation length < 2.4%/wedge to minimize multiple scattering
- Outer Support and Cooling outside active area
- Kapton cable plant primarily outside active area

FVTX Electrical Design

- p on n ministrip sensor, 75 $\mu m~x~3.75^{o} \rightarrow$
- Data push FPHX readout chip →
- High density interconnect cable \rightarrow
- ROC (big wheel area in IR) \rightarrow
- FEM (VME crate in counting house) \rightarrow
- PHENIX DCMs

Forward Silicon Vertex Detector

In Construction – FY09 – FY11, installation in summer 2011. Significant ongoing commitment needed to ensure successful delivery of project.
 Physics Running – FY12, plus 5-10 years (multiple beam types, energies, etc.)
 LANL Role – Project Management, oversight of commissioning, support throughout data taking runs, significant role in data analysis

Technical Design Report of the Forward Silicon Vertex Tracker (FVTX)

5 January 2012

LANL LDRD Support to develop project (ER, DR 2003 – 2008) -

both experimental and theoretical work supported

February 2007 – BNL Review - Go-ahead to proceed with DOE Review

July 2007 DOE Science Review – Additional work requested, response

document produced Oct. 2007

FVTX Project History

November 2007 Technical Review

Project Start – March 2008, \$500k construction funds received April 2008, for FY08

Stimulus funds - FVTX approved for stimulus funding in 2008, remaining funds received 2009.

Construction

- 2008 prototyping
- 2009 first production modules
- 2010 assembly started in earnest
- 2011 assembly and installation COMPLETE
- 2012 ongoing cabling/commissioning, first data

FVTX Project Deliverables

Item	Number	Working Spares
Wedge assemblies		
Large Sensors	288	25 in spare wedges
Small Sensors	96	8 in spare wedges
Large Wedges	288	25
Small Wedges	96	8
ROC boards	24	4
FEM boards	48	6
Mechanical		
Large ¹ / ₂ Disks	12	2
Small ¹ / ₂ Disks	4	1
Suspension system	1 (VTX funded)	0
Dry gas enclosure	1 (VTX funded)	0
Cooling system	1 (VTX funded)	0
Power supply system	1	Spare components available
DCM channels	48	4
16/15	Ming X Liu, Los Alamos	

FVTX Functional Requirements

Mini strips active	>80%	(expect ~99%)
Hit efficiency	>85%	(expect ~99%)
Radiation length per wedge	< 2.4 %	
Detector hit resolution	$< 25 \ \mu m$	(can achieve without analog information)
Random noise hits/chip	<0.1%	(threshold:noise ~5:1)
Level-1 latency	4 µs	
Level-1 Multi-Event buffer depth	4 events	
Read-out time	$< 40 \ \mu s$	
Read-out rate	> 10 kHz	

*Primary bench test requirements. Others are met by design

- Air cooling channel under ROC is probably sufficient to cool the system.
- \rightarrow ~1% radiation length for double layer

This can reduce the size of the detector. (R~50cm)

sPHENIX silicon tracker R&D in Japan

- Silicon sensor R&D at RIKEN in JFY2014
- Large Prototype sensor for the outer most layer
 - 96 mm x 92.16mm active area
 - $\,$ 320 μm thick
 - AC coupled
 - 6x128x24 mini-trips (60μm x 8mm)
 - 128x24 read-out channels
- 5 sensors manufactured at Hamamatsu and delivered to RIKEN in March 2015
- For all of 5 delivered sensors
 - No NG channels or strip
 - Vfd = 50 V
 - Vbreakdown > 250V (>500V for two)
- All 5 sensors are now at BNL for testing