

$A_{LL}^{\pi^{\pm}}$ at mid-rapidity in polarized p+p at \sqrt{s} = 510 GeV with PHENIX

Taebong Moon for the PHENIX Collaboration

Yonsei Univ./RIKEN

October 19th 2015

Introduction : Spin Composition of Proton

- Naive model:
 - Proton spin carried out only by valence quarks.
 - Experiments in the 1980s, showed that quarks contribute only ${\sim}30\%$ of

proton spin. \rightarrow Spin Crisis!

• Current understanding:

Proton Spin =
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q+g}$$

- Largely unconstrained.
- has been measured by various probes:
- π^0 , π^{\pm} , η , γ_{direct} and e from heavy flavor.

If we also assume a favored fragmentation for π^+ and π ,

$$D_{u,\overline{d}}^{\pi^{+}} >> D_{\overline{u}, d, s, \overline{s}}^{\pi^{+}} \qquad D_{d,\overline{u}}^{\pi^{-}} >> D_{\overline{d}, u, s, \overline{s}}^{\pi^{-}}$$

$$A_{LL}^{\pi^{+}} \approx a_{gg} \Delta g \Delta g + a_{ug} \Delta u \Delta g$$

 $A_{LL}^{\pi^{-}} \approx a_{gg} \Delta g \Delta g + a_{dg} \Delta d \Delta g$

<u>RHIC</u>

- World FIRST polarized p+p collider
 - Up to $\sqrt{s} = 510 \text{ GeV}$
 - Integrated luminosity 150 pb⁻¹, polarization ~ 56% at \sqrt{s} = 510 GeV (2013)
 - Longitudinal or transverse polarization

• Tracking - VTX, DC and PC Luminosity
BBC and ZDC

- PID
 - RICH and EMCal

- Acceptance
 - $\ln < 0.35$, $\Delta \phi = 2 \times \pi/2$
- Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

<u>Datasets</u>

- 20(2012) and 108(2013) pb^{-1} polarized p+p data available.
- In 2013 dataset, charged pion analysis with \sim 4G events analysed.
- Triggering : "EMCal" and "EMCal RICH" Triggers used.

Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

Analysis procedure

- 1. Data selection
- 2. Event cut
- 3. Particle ID
- 4. Measurement of Asymmetry

Κ

Π

(1) Data selection

- Data sample: Run13 510 GeV pp ERT
- 1008 physics runs available in AnaTrain
- 782 runs passed QA and analyzed
- ERT triggers analysed:
 - ERTLL1_4x4a&BBCLL1(noVtx)
 - ERT_4x4b
 - ERT_4x4c&BBCLL1(noVtx)
 - ERTLL1_E&BBCLL1(narrow)

(1) Data selection

- At this moment I analyzed 782 runs passed by Inseok.
 - 1. DAQ time > 10 minutes
 - 2. Live time > 0.5
 - 3. Only runs in the spin database
 - 4. Polarization on both beams > 10%
 - 5. GL1p and Starscaler agreement
 - 0.998 < GL1p scaler counts / Star scaler counts < 1.002
 - Chi2 of constant fitting on the ratio above $< 2.5X10^3$

Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

(2) Event cuts

- Event cut:
 - IBBCZI < 30cm
 - ERTLL1_4x4a&BBCLL1(noVtx)
 - ERT_4x4b
 - ERT_4x4c&BBCLL1(noVtx)
 - ERTLL1_E&BBCLL1(narrow)

<u>(3) π[±] ID - Background sources</u>

- e[±] from the collision vertex and beam pipe conversions
 - primary e^{\pm}/π^{\pm} and μ^{\pm}/π^{\pm} production ratios < 10⁻³ [ANA311]
 - emce/mom < 0.9 & EM shower shape cut < 0.2
- Fake track & π^{\pm} from hadron shower at pole tips
 - DC track quality = 31 or 63, and IDC zedl < 75 cm
- Charged hadron: K (>16.5GeV) and p (>29GeV)
 - RICH PMT hit (N1) > 0
- "Fake" high pT backgrounds by decay-in-flight and photon conversion
 - require large energy deposition in EMCal -> pT dependent emce
 - EMCal and PC3 matching cuts

Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

Wrongly recon. track

event vertex

Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

DC

EMCal

Wrongly recon. track

event vertex

Japan-Korea PHENIX Collaboration Meeting @ Hanyang Univ.

DC

EMCal

(3) π^{\pm} ID - Background sources

- Track cuts:
 - RICH n1 > 0
 - emce/mom < 0.9
 - emce > 0.3 + 0.15 pT
 - prob < 0.2
 - DC track quality = 31 II 63
 - IDC track zedl < 75cm (Sookhyun applied ±70 cm cut)
 - 3 sigma PC3 and EMcal matching cuts

Particle ID (one data sample)

• π^{\pm} turn on at above 4.7 GeV (threshold p for producing Cerenkov light).

Measuring A_{LL} in experiment

$$\overrightarrow{\bullet} + \overrightarrow{\bullet} \qquad \overrightarrow{\bullet} + \overrightarrow{\bullet} + \overrightarrow{\bullet} \qquad \overrightarrow{\bullet} + \overrightarrow{\bullet} +$$

$$A_{LL}^{\pi} = \frac{d\Delta\sigma}{d\sigma} = \frac{1}{|P_B P_Y|} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

$$R = \frac{L_{++}}{L_{+-}}$$

A_{LL}

0.1 A_{LL} Α^{π΄} @ 510 GeV A^{≭⁺} @ 510 GeV 0.08 – Α^{π΄} @ 200 GeV (PRD91,032001) 0.06 DSSV14 ($\Delta G > 0$) for π^{-1} DSSV14 ($\Delta G > 0$) for π^+ 0.04 0.02 0 T -0.02 -0.04^L 6 8 10 12 14 p_T [GeV/c]

 $\pi^{\pm} A_{LL}$ at $\sqrt{s} = 200$ and 510 GeV

High pT background

- My *Uncorrected pT spectra scaled by 1.0e+10 for comparison with PPG186(Pi0 ana).
- There are still remaining backgrounds.
 - decayed particle/photon conversion
 - fake tracks due to left right ambiguity [should be rejected track near anode wire]

Anode wire region

- High pT particle going through near anode wire region.
- Due to left right ambiguity one more (fake) track might be reconstructed.
- Therefore, this region btw anode and back wires should be masked.

<u>Summary</u>

- Sensitive to the sign and magnitude of ΔG .
- Charged pion analysis with 510 GeV dataset is ongoing.
- Especially working on high pT background rejection.

<u>Outlook</u>

- The key is to remove high pT backgrounds as much as possible.
- With improved statistics, expected to contribute to constrain ΔG .
- To cross-check the sign of ΔG with higher C.L., the dataset in 2012 will be analyzed as well.

Thanks!!

 $A_{LL} = \frac{d\Delta\sigma}{d\sigma} = \sum_{f=q,g} \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes (Fragmentation Functions)$

