# High statistics measurement of gluon polarization in low-x region

2015/10/19

Yoon Inseok

4<sup>th</sup> Japan-Korea PHENIX Collaboration Meeting

# Contents

- Motivation: constrain  $\Delta g$  at lower x region
- Accessing  $\Delta g$  via  $A_{LL}^{\pi^0}$
- Overview of the measurement
- Relative luminosity
- Event and photon selection
- $A_{LL}$  analysis
- Results and Discussion

• Jaffe-Monohar Spin Sum rule.

$$S_z^P = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_z^q + \Delta G + L_z^g$$

• Proton Spin Crisis

 $\Delta\Sigma$  can explain only 30% of proton spin.

 $\Rightarrow$  "Can  $\Delta G$  explain the missed spin part?"

Many experimental endeavors have been carried out to measure Δg. Polarized p + p is best tool to sense Δg.
PHENIX A<sup>π<sup>0</sup></sup><sub>LL</sub> @ √s = 62.4, 200 GeV.
STAR A<sup>Jet</sup><sub>LL</sub> @ √s = 200 GeV



• STAR  $A_{LL}^{Jet}$  @  $\sqrt{s} = 200$  GeV constrains  $\Delta g$ , coverage  $0.05 \le x \le 0.2$ .

• However, large uncertainty still remains. Expanding experimental sensitivity to lower *x* region is important! Measurement at higher  $\sqrt{s} = 510 \text{ GeV} (x_T = \frac{2P_T}{\sqrt{s}})$ Target x range.  $0.01 < x < 0.1 (P_T \text{ coverage: } 2 - 20 \text{ GeV}/c)$ 



•  $\sigma^{p+p \to \pi^0 + X} = \sum_{f_{a,b}=q,\bar{q},g} f_a(x_1) \otimes f_b(x_2) \otimes \hat{\sigma}_{elastic}^{a+b \to c+X} \otimes D_c^{\pi^0}$ PDF and FF: by experiments.  $\hat{\sigma}_{elastic}^{a+b \to c+X}$ : by pQCD.

• Nice agreement of unpolarized  $\sigma$  assures that the factorization is valid.

# 2. Accessing $\Delta g$ via $A_{LL}^{\pi^0}$

$$A_{LL}^{h} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$
$$= \frac{\sum_{f_{a,b}=q,\bar{q},g} \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma}_{elastic}^{a+b\to c+X} \otimes D_c^h}{\sum_{f_{a,b}=q,\bar{q},g} f_a \otimes f_b \otimes \hat{\sigma}_{elastic}^{a+b\to c+X} \otimes D_c^h}$$



- Advantage of  $A_{LL}^{\pi^0}$ .
  - 1. Large fraction of  $\pi^0$  is made by gg or gq scattering.
  - 2.  $\pi^0$  cross section is well understood.
  - 3. Identifiable peak and easy PID.
  - 4. Large statistics.



# 3. Overview of the measurement



- 20(2012) and 108 (2013)  $pb^{-1}$  of polarized  $p + p @ \sqrt{s} = 510$  GeV data. 6 times larger luminosity compared to  $A_{LL}^{\pi^0} @ \sqrt{s} = 200$  GeV.
- The  $\sigma$  and  $A_{LL}$  of  $\pi^0 @ \sqrt{s} = 510$  GeV result are submitted to PRL. (arXiv:1510.02317)

# 3. Overview of the measurement

• Measuring  $A_{LL}$ 

$$A_{LL} = \frac{1}{P_B P_B} \frac{\frac{N_{++}}{L_{++}} - \frac{N_{+-}}{L_{+-}}}{\frac{N_{++}}{L_{++}} + \frac{N_{+-}}{L_{+-}}}$$
$$= \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} - RN_{+-}} \quad \text{where} \quad R = \frac{L_{++}}{L_{+-}}$$

 To correct effect of background, A<sub>LL</sub>s of two regions are measured. Peak region: 112-162 MeV/c<sup>2</sup>
 Side region: 47-97 or 117-227 MeV/c<sup>2</sup>

$$A_{LL}^{\pi^0} = \frac{A_{LL}^{\pi^0 + BG} - rA_{LL}^{BG}}{1 - r}, \qquad \sigma_{A_{LL}^{\pi^0}} = \frac{\sqrt{\sigma_{A_{LL}}^{2\pi^0 + BG} + r^2 \sigma_{A_{LL}}^{2BG}}}{1 - r}$$

where r is background fraction under peak region.

• The r is estimated by GPR.



# 4. Relative Luminosity - Overview

• The Rel. Lumi, is



 $R = \frac{L_{++}}{I}$ 

### Measured with BBC30cm scaler.



(a) Even Crossing

(b) Odd Crossing

Relative Luminosity Odd crossing

GL1p

SS. Uncon

SS. Pile Un

29 Desidu

369 Run#

- Conditions for good luminosity detectors
  - 1. Low background from noise or beam gas.
  - 2. High statistics
  - 3. Same acceptance, i.e.  $|Vertex_Z| < 30cm$
  - 4. No helicity dependence i.e.  $A_{LL}^{BBC} = 0$

-BBC satisfied the conditions

The fourth condition is not that easy.

# 4. Relative Luminosity - Measuring $A_{LL}^{ZDC/BBC}$

•  $A_{LL}^{BBC}$  is estimated by  $A_{LL}^{ZDC/BBC}$ .

$$A_{LL}^{BBC} = \frac{1}{P_B P_Y} \frac{\frac{N_{BBC}^{++}}{L_{++}} - \frac{N_{BBC}^{+-}}{L_{+-}}}{\frac{N_{BBC}^{++}}{L_{++}} + \frac{N_{BBC}^{+-}}{L_{+-}}} \implies A_{LL}^{ZDC/BBC} = \frac{1}{P_B P_Y} \frac{\frac{N_{ZDC}}{N_{BBC}^{++}} - \frac{N_{ZDC}}{N_{BBC}^{++}}}{\frac{N_{BBC}^{++}}{N_{BBC}^{+-}}}.$$

• • I - I

- - I

• Measuring  $A_{II}^{ZDC/BBC}$  of single run.



386946\_Uncorr

called "bunch fitting"

 $r(i) = C \times (1 + \varepsilon_{LL} \times \text{Helicity Index}_{\text{Blue}} \times \text{Helicity Index}_{\text{Yellow}})$ 

# 4. Relative Luminosity - Measuring $A_{LL}^{ZDC/BBC}$

$$A_{LL}^{ZDC/BBC} = \frac{\varepsilon_{LL}}{P_B P_Y}$$
$$\Delta A_{LL}^{ZDC/BBC} = \frac{1}{P_B P_Y} \sqrt{(\Delta \varepsilon_{LL} \times \sqrt{\chi_{re}^2})^2 + \varepsilon_{LL}^2 \left( (\frac{\Delta P_B}{P_B})^2 + (\frac{\Delta P_Y}{P_Y})^2 \right)}$$

• Then, const. fit to obtain whole Run average  $A_{LL}^{ZDC/BBC}$ 



Called "Run fitting"

# 4. Relative Luminosity - Corrections

- To correct scaler miscount by
  - 1. multiple collisions, single sided collisions: pileup correction(=rate correction)
  - 2. vertex cut and detector resolution: residual rate correction.



# 4. Relative Luminosity - Pileup Correction

• Pileup correction: to correct piled or single side event.



Coin. Rate<sup>*ob.*</sup> =  $1 - e^{-\text{Coin. Rate<sup>true(1+k_N)</sup>}}$ 

$$-e^{-\operatorname{Coin. Rate}^{true(1+k_S)}} + e^{-\operatorname{Coin. Rate}^{true(1+k_N+k_S)}}$$

Note) No vertex cut is considered.



 $k_{N(s)}$ : single to double hit ratio, measurable with STAR scaler data.

# 4. Relative Luminosity - Residual Rate Correction

• Residual rate correction: to correct the effect of vertex cut.

 $f = \frac{\text{Observed 30cm vertex}_{z} \text{ scaler count}}{\text{Observed no vertex}_{z} \text{ scaler count}}$ 

$$Rate_{obs} \rightarrow f Rate_{obs}$$
$$Rate_{obs} = F(Rate_{true})$$
$$\rightarrow f Rate_{obs} \approx F(Rate_{true,vtx})$$

$$Rate_{true} = F^{-1}(Rate_{obs})$$
$$Rate_{true,vtx} \approx F^{-1}(fRate_{obs})$$



# 4. Relative Luminosity - Result

Run12: 
$$\Delta A_{LL}(Rel.Lumi) = 2.003 \times 10^{-4}$$
  
Run13:  $\Delta A_{LL}(Rel.Lumi) = 3.853 \times 10^{-4}$ 

Cf)  $\Delta A_{LL}(Rel.Lumi) = 7.340 \times 10^{-4}$  with width correction, classical way of correcting the effect of vertex cut.

# 5. Events and $\gamma$ Selections

• Run QA.

DAQ live time > 0.5, Spin DB, Polarization>0.1, GL1p and Star scaler agreement
⇒ 227 runs (Run12) and 760 runs (Run13) has passed the QA.
19.93 pb<sup>-1</sup> (Run12) and 108.1 pb<sup>-1</sup>.
Note) QA on EMCal is covered by EMCal run-by-run energy calibration.

• Event Selection.

 $ERT_4x4A||ERT_4x4B||ERT_4x4C, |Vertex_Z| < 30cm$ 

- Photon ID.
  - 1. Min energy cut: 0.3 GeV to reject noise hits.
  - 2. Warnmap cut: To reject abnormal towers.
  - 3. Shower profile cut: To reject hadron hits
  - 4. Charge veto cut: To reject charge tracks
  - 5. ToF cut: To reject ghost clusters

# 6. A<sub>LL</sub> Analysis

- Run-by-run  $A_{LL}$  calculation.
  - : Run-by-run prescale make run-dependent effective efficiency.
- Statistical uncertainty of  $A_{LL}$

- Constant fit to get average  $A_{LL}$ .
  - : To avoid fake asymmetry from ghost cluster, Spin pattern separated fitting done.





# 6. A<sub>LL</sub> Analysis - Background Subtraction

• Background fraction estimation.

 $r = \frac{\int_{m_1}^{m_2} \text{distribution describing background spectrum}}{\int_{m_1}^{m_2} \text{di-photon invariant mass spectrum}}$ 

GPR: No functional form is assumed. Uncertainty band is given.

 $\Rightarrow$  Best estimator. *r* obtained by GPR is used for the analysis.

Fitting method: Functional form should be assumed. (Gaus+Pol3 or Voigt+Pol3)

Hard to estimate uncertainty.



 $\Rightarrow$  Discrepancy of r is assigned as syst.

# 6. A<sub>LL</sub> Analysis - Background Subtraction





(b) Odd

• Background Subtraction.

$$A_{LL}^{\pi^{0}} = \frac{A_{LL}^{\pi^{0} + BG} - rA_{LL}^{BG}}{1 - r}, \qquad \sigma_{A_{LL}^{\pi^{0}}} = \frac{\sqrt{\sigma_{A_{LL}}^{2} + r^{2}} \sigma_{A_{LL}^{BG}}^{2}}{1 - r}$$

# 6. A<sub>LL</sub> Analysis - Results



1. Run12

1. Run13



- Blue band: Syst. from relative luminosity. Red box: background fraction estimation.
- World first non-zero asymmetry in hadron production is observed!  $(3.3\sigma)$



• Positive  $\Delta G$  is reconfirmed with higher  $Q^2$  and different channel. (Cf. STAR  $A_{LL}^{Jet} @ \sqrt{s} = 200 \text{ GeV}$ )



• The new  $A_{LL}^{\pi^0} @ \sqrt{s} = 510$  GeV covers lower x region, 0.01 < x.

Cf) 
$$A_{LL}^{\pi^0} @ \sqrt{s} = 200 \text{ GeV: } 0.02 < x$$
  
 $A_{LL}^{Jet} @ \sqrt{s} = 200 \text{ GeV: } 0.05 < x$ 

 $\Rightarrow$  Significant contribution to constrain  $\Delta g$  at lower *x* is expected.

# Summary

- $\sigma$  and  $A_{LL}$  of  $\pi^0 @ \sqrt{s} = 510$  GeV are measured and the results are submitted to PRL (arXiv:1510.02317)
- Nice agreement of theoretical to measured  $\pi^0$  cross section.  $\Rightarrow$  Our understanding of pQCD and parton-to-hadron fragmentation are mature.
- $A_{LL}^{\pi^0} @ \sqrt{s} = 510$  GeV.
  - 1. Positive asymmetry is observed.
    - $\Rightarrow$  Positive  $\Delta G$  is reconfirmed with higher  $Q^2$  and different channel.
  - 2. Lower *x* range is accessed. 0.01 < x.
    - $\Rightarrow$  Significant contribution to constrain  $\Delta g$  at lower x is expected. (ongoing)

# Back Up

• Proton: the basic QCD object.

Understanding proton structure

 $\Rightarrow$ Able to explain proton properties by its properties of constituents.

• Spin Sum rule.

Ellis-Jaffe Spin Sum rule with naïve quark model.

$$S_z^P = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_z^q$$

Ellis-Jaffe sum rule predicted  $\int_0^1 dx g_1^P(x, Q^2) = 0.189 \pm 0.005$ 

• The EMC result: polarized DIS with polarized  $\mu$  to measure  $g_1^p$ .

$$A_{1}^{P} = \frac{\sigma_{+-} - \sigma_{++}}{\sigma_{+-} + \sigma_{++}}$$
$$A_{1}^{P} = \frac{g_{1}^{P}(x, Q^{2})}{F_{1}^{P}(x, Q^{2})}$$



- 1. Ellis-Jaffe sum rule is violated clearly.
- $2.\,\Delta\Sigma = 0.120 \pm 0.094 \pm 0.138$
- Jaffe-Monohar Spin Sum rule.

$$S_z^P = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_z^q + \Delta G + L_z^g$$

 $\Delta G$  becomes key of understanding spin structure of proton.

• Current Knowledge of  $\Delta g$ . Mostly obtained by p + p collisions.  $A_{LL}$  of  $\pi^0$  at 62.4 GeV, 200 GeV (PHENIX)  $A_{LL}$  of jet at 200 GeV (STAR)



### 2. Accessing $\Delta g$ via $A_{LL}$







# 3. RHIC Spin Runs

- Spin pattern: check and reduce possible syst. from bunch filling.
- The analysis has been done spin pattern separately to reject false asymmetry. (Discussed later)

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|---|---|---|---|---|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P1 B | + | - | + | - | - | + | - | + |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y    | + | + | - | - | + | + | - | - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P2 B | - | + | - | + | + | - | + | - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y    | + | + | - | - | + | + | - | - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P3 B | + | - | + | - | - | + | - | + |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y    | - | - | + | + | - | - | + | + |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P4 B | - | + | - | + | + | - | + | - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y    | - | - | + | + | - | - | + | + |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P5 B | + | + | - | - | + | + | - | - |
| P6 B       +       +       -       -       +       +       -       -         Y       -       +       -       +       +       -       +       -       -         P7 B       -       -       +       +       -       -       +       +         Y       +       -       +       +       -       -       +       +         Y       +       -       +       +       -       -       +       +         P8 B       -       -       +       +       -       -       +       +         Y       -       +       -       +       +       -       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y    | + | - | + | - | - | + | - | + |
| Y       -       +       -       +       -       +       -         P7 B       -       -       +       +       -       -       +       +         Y       +       -       +       +       -       -       +       +         Y       +       -       +       +       -       -       +       +         P8 B       -       -       +       +       -       -       +       +         Y       -       +       -       +       +       -       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P6 B | + | + | - | - | + | + | - | - |
| P7 B       -       +       +       -       -       +       +         Y       +       -       +       -       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <td>Y</td> <td>-  </td> <td>+</td> <td>-</td> <td>+</td> <td>+</td> <td>-</td> <td>+</td> <td>-</td>                   | Y    | - | + | - | + | + | - | + | - |
| Y         +         -         +         -         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         + | P7 B | - | - | + | + | - | - | + | + |
| P8 B + + + +<br>Y - + - + + - + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y    | + | - | + | - | - | + | - | + |
| Y - + - + + - + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P8 B | - | - | + | + | - | - | + | + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y    | - | + | - | + | + | - | + | - |

| - | SOOS | P1 | P4 | P5 | P8 |
|---|------|----|----|----|----|
| - | OSSO | P2 | P3 | P6 | P7 |

 Physics should invariant under beam change and parity operation.

1. Run12 spin patterns

 $\Rightarrow$ 

### 3. RHIC Spin Runs

| P1 B | + | + | - | - | + | + | - | - | + | + | - | - |   |   | P21 B | + | + | - | - | + | + | - | - |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|
| Y    | + | + | + | + | - | - | - | - | + | + | + | + | - | - | Y     | + | + | + | + | - | - | - | - |
| P2 B | - | - | + | + | - | - | + | + | - | - | + | + |   |   | P22 B | - | - | + | + | - | - | + | + |
| Y    | + | + | + | + | - | - | - | - | + | + | + | + | - | - | Y     | + | + | + | + | - | - | - | - |
| P3 B | + | + | - | - | + | + | - | - | + | + | - | - |   |   | P23 B | + | + | - | - | + | + | - | - |
| Y    | - | - | - | - | + | + | + | + | - | - | - | - | + | + | Y     | - | - | - | - | + | + | + | + |
| P4 B | - | - | + | + | - | - | + | + | - | - | + | + |   |   | P24 B | - | - | + | + | - | - | + | + |
| Y    | - | - | - | - | + | + | + | + | - | - | - | - | + | + | Y     | - | - | - | - | + | + | + | + |
| P5 B | + | + | + | + | - | - | - | - | + | + | + | + | - | - | P25 B | + | + | + | + | - | - | - | - |
| Y    | + | + | - | - | + | + | - | - | + | + | - | - |   |   | Y     | + | + | - | - | + | + | - | - |
| P6 B | + | + | + | + | - | - | - | - | + | + | + | + | - | - | P26 B | + | + | + | + | - | - | - | - |
| Y    | - | - | + | + | - | - | + | + | - | - | + | + |   |   | Y     | - | - | + | + | - | - | + | + |
| P7 B | - | - | - | - | + | + | + | + | - | - | - | - | + | + | P27 B | - | - | - | - | + | + | + | + |
| Y    | + | + | - | - | + | + | - | - | + | + | - | - |   |   | Y     | + | + | - | - | + | + | - | - |
| P8 B | - | - | - | - | + | + | + | + | - | - | - | - | + | + | P28 B | - | - | - | - | + | + | + | + |
| Y    | - | - | + | + | - | - | + | + | - | - | + | + |   |   | Y     | - | - | + | + | - | - | + | + |

↓

| SOOSSOO | P1  | P4  | P5  | P8  |
|---------|-----|-----|-----|-----|
| OSSOOSS | P2  | P3  | P6  | P7  |
| SSOO    | P21 | P24 | P25 | P28 |
| OOSS    | P22 | P23 | P26 | P27 |

1. Run13 old and new spin patterns



# 4. Relative Luminosity - Pileup Correction



$$A_{LL}^{ZDC/BBC} = 3.188 \times 10^{-6} \pm 1.988 \times 10^{-5}$$
  
$$\chi_{re}^{2}(runfitting) = 3.988 \times 10^{3}/219 = 1.821 \times 10^{1}$$
  
$$\overline{\chi_{re}^{2}(bunchfitting)} = 1.531 \times 10^{2}$$
  
$$A^{ZDC/BBC} = -5.828 \times 10^{-5} \pm 9.293 \times 10^{-6}$$

$$\chi_{LL}^{2} = -5.626 \times 10^{-1} \pm 9.293 \times 10^{-1}$$
$$\chi_{re}^{2}(runfitting) = 2.606 \times 10^{4}/762 = 3.420 \times 10^{1}$$
$$\overline{\chi_{re}^{2}(bunchfitting)} = 2.047 \times 10^{2}$$
Run13<sub>34</sub>



(a) Run12 BBC

(b) Run12 ZDC



(c) Run13 BBC

(d) Run13 ZDC

# 4. Relative Luminosity - Residual Rate Correction



$$A_{LL}^{ZDC/BBC} = 7.964 \times 10^{-5} \pm 2.113 \times 10^{-5}$$
  
$$\chi_{re}^{2}(runfitting) = 4.560 \times 10^{2}/219 = 2.082 \times 10^{0}$$
  
$$\overline{\chi_{re}^{2}(bunchfitting)} = 1.454 \times 10^{1}$$
  
Run12

$$A_{LL}^{ZDC/BBC} = 5.610 \times 10^{-5} \pm 1.002 \times 10^{-5}$$
  
$$\chi_{re}^{2}(runfitting) = 4.237 \times 10^{3}/762 = 5.560 \times 10^{0}$$
  
$$\overline{\chi_{re}^{2}(bunchfitting)} = 2.355 \times 10^{1}$$
  
Run13 <sub>36</sub>

# 4. Relative Luminosity - Correction

|                      | Uncorr               | Pileup               | Width                 | Residual             |
|----------------------|----------------------|----------------------|-----------------------|----------------------|
| $A_{LL}^{ZDC/BBC}$   | $-2.18	imes10^{-4}$  | $-1.09	imes10^{-4}$  | $5.47 	imes 10^{-4}$  | $1.17 	imes 10^{-4}$ |
| $\chi^2_{re}(run)$   | $5.17 	imes 10^1$    | $1.82 \times 10^{1}$ | $1.65 	imes 10^1$     | $2.08 	imes 10^0$    |
| $\chi^2_{re}(bunch)$ | $1.68 \times 10^3$   | $6.73 \times 10^2$   | $9.44 \times 10^2$    | $1.45 	imes 10^1$    |
| Syst.Pattern         | $6.23 	imes 10^{-3}$ | $3.44 	imes 10^{-4}$ | $9.28 \times 10^{-5}$ | $1.44 	imes 10^{-4}$ |

Table 6.1: Run12 summary of corrections on scaler counts.

|                      | Uncorr                | Pileup                | Width               | Residual             |
|----------------------|-----------------------|-----------------------|---------------------|----------------------|
| $A_{LL}^{ZDC/BBC}$   | $-2.43 	imes 10^{-4}$ | $-5.83 	imes 10^{-5}$ | $-1.70	imes10^{-5}$ | $5.61 	imes 10^{-5}$ |
| $\chi^2_{re}(run)$   | $9.44 	imes 10^1$     | $3.42 \times 10^{1}$  | $2.53 	imes 10^1$   | $5.56 \times 10^{0}$ |
| $\chi^2_{re}(bunch)$ | $3.08 \times 10^3$    | $2.05\times 10^2$     | $1.28\times 10^2$   | $2.36\times10^{1}$   |
| Syst.Pattern         | $3.00 \times 10^{-3}$ | $1.08 	imes 10^{-3}$  | $7.34\times10^{-4}$ | $3.69\times10^{-4}$  |

Table 6.2: Run13 summary of corrections on scaler counts.

# 4. Relative Luminosity - Syst. (Corr.)

• Correction parameters,  $k_N$  and  $k_S$  are obtained by fitting.

The  $k_N$  and  $k_S$  is varied by adding  $N \times \sqrt{\chi^2_{Re} \times \Delta k}$  where N = -2, -1, 0, 1, 2.

Then,  $A_{LL}^{ZDC/BBC}$  is calculated for each varied  $k_N$  and  $k_S$  set.



 $\Rightarrow \frac{\text{Run13: } \Delta A_{LL}^{ZDC/BBC}(syst.correction) = 7.003 \times 10^{-8}}{\text{Run13: } \Delta A_{LL}^{ZDC/BBC}(syst.correction) = 8.727 \times 10^{-8}}$ 

# 4. Relative Luminosity - Syst. (Spin Pattern)

•For each spin pattern, different  $A_{LL}^{ZDC/BBC}$  are observed. The corrections removed the separation mostly. Remaining separation is assigned as syst.



 $\Rightarrow \frac{\text{Run12: } \Delta A_{LL}^{ZDC/BBC}(syst, pattern) = 1.445 \times 10^{-4}}{\text{Run13: } \Delta A_{LL}^{ZDC/BBC}(syst. pattern) = 3.694 \times 10^{-4}}$ 



(c) Even Crossing

(d) Odd Crossing

(c) Even Cross

ld Crossing

### 4. PHENIX and Calibrations

• EMCal energy calibration: calibrated with  $\pi^0$  peak position. Tower-by-tower calibration: with whole run data. Run-by-run and sector-by-sector calibration: to reject run-by-run gain shift + QA.





### 4. PHENIX and Calibrations

• EMCal ToF tower-by-tower calibration: calibrated with  $\gamma$  peak position.





# 3. RHIC and PHENIX

### • EMCal-RICH Trigger.



Energy sum of 4x4 tower is bigger than predefined threshold. ERT\_4x4A: 4.7 GeV ERT\_4x4B: 5.6 GeV ERT\_4x4C: 3.7 GeV

### 3. RHIC and PHENIX

- Crossing dependence of EMCal-RICH Trigger.
   Summing amp. need 140ns. Cf) 1 BCLK=106ns
   ⇒ two identical circuits to support full bunchs.
  - $\Rightarrow$  Slightly different trigger effi.
  - $\Rightarrow$  The analysis has been done crossing separately.



# 3. RHIC and PHENIX

### • PHENIX DAQ and prescale

If trigger rate is faster then DAQ bandwidth, the trigger need to be prescaled.

|          | 1        | 2 | 3 | 4      | 5 | 6 | 7    | 8 | 9 |
|----------|----------|---|---|--------|---|---|------|---|---|
| A(2)     | 0        |   | 0 | 0      |   |   | 0    |   |   |
| B(0)     | 0        |   |   | 0      |   |   |      |   |   |
| C(4)     | 0        |   | 0 | 0      | 0 |   | 0    |   | 0 |
| recorded | 0(A,B,C) |   |   | 0(A,B) |   |   | 0(C) |   |   |

Different prescale is selected as luminosity decay.

ERT\_4x4A: 0~2

ERT\_4x4B: 0

ERT\_4x4C: 0~4

• Scaler board: since BBC, ZDC are highly prescaled, independent scaler boards record prescale free trigger counts.

•  $\pi^0$  Reconstruction.

If invariant mass

Direction cosine from  $vertex_z$  to EMCal hits. Multiply cluster energy.

$$P_{\gamma,\mu} = (E, E\cos\theta_x, E\cos\theta_y, E\cos\theta_z)$$

By momentum conservation,

$$P_{\pi^0,\mu} = P_{\gamma_1,\mu} + P_{\gamma_2,\mu}$$
$$M_{\gamma\gamma} = \sqrt{P_{\pi^0,\mu}P_{\mu}^{\mu}}$$

 $112 MeV/c^2 < M_{\gamma\gamma} < 162 MeV/c^2$ , the  $\gamma$  pair is considered  $\pi^0$  decay  $\gamma$  pair.

• Trigger requirement to assure trigger bias is same for every  $\pi^0$ .

i.e. want to reject  $\pi^0$  from  $p + p \rightarrow \pi^0 + c + X$ 

 $\Rightarrow$  require ERT trigger for every  $\pi^0$ .

Practically ERT trigger is require for higher energy cluster.

Called triggered cluster, paired cluster.

### • Photon ID.

- 1. Min energy cut: 0.3 GeV to reject noise hits.
- 2. Warnmap cut: To reject abnormal towers.
- 3. Shower profile cut: To reject hadron hits
- 4. Charge veto cut: To reject charge tracks
- 5. ToF cut: To reject ghost clusters
- Warnmap cut: To reject noisy, dead, uncalibrated, and the adjacent tower

 $\circ$ Dead tower  $\equiv$  completely no hit

 Uncalibrated towers in tower-by-tower energy calibration.

- Adjacent tower to the bad towers
- : Cluster spreads over at least 3x3 towers
- $\Rightarrow$  17% towers are rejected.





(a) Sector 0



(c) Sector 2  $_{_{Histo\_4}}$ 



(e) Sector 4



(g) Sector 6



(b) Sector 1



(d) Sector 3



(f) Sector 5



(h) Sector 7



(a) Sector 0



(c) Sector 2



(e) Sector 4



(g) Sector 6



(b) Sector 1



(d) Sector 3



(f) Sector 5



(h) Sector 7

• Shower shape cut: to reject hadron

PHENIX EMCal can distinguish hadron by shower shape and *deposited energy*/*P*. Cut level: killing 2% real EM clusters (Convention in PHENIX)



- Charge veto cut: to reject charged tracks.
  - $\theta_{cv}$ : the opening angle between two vector, one from  $vertex_z$  to EMCal hit the other from  $vertex_z$  to PC3, 20cm(PbSc), 40cm(PbGl) inner.





(a) Charge Veto Region: PbSc

Di-photon Invariant Mass Distributions of the Three CV Region



(b) Charge Veto Region: PbGl





(a) "Small"  $\theta_{CV}$ 



(c) "Large"  $\theta_{CV}$ 

• ToF Cut: to reject ghost cluster.

Cluster can survive up to three bunch crossings and make low energy background. Because they don't associate event  $t_0$ , they have wider ToF distribution. |ToF| < 15ns









0\_pt\_15.0\_20.0\_PbSc

Entries Mean DMS

Contrast in the second

22596







241586 0.1592

















0.1587

60000

50000

40000

30000

20000 10000

400 200 100

Entries Mean



0\_pt\_5.0\_6.0\_PbSc

0\_pt\_8.0\_9.0\_PbSc



0\_pt\_2.5\_3.0\_PbSc













0\_pt\_8.00\_9.00\_PbGI









12000







0\_pt\_4.50\_5.00\_PbGI





0\_pt\_6.00\_7.00\_PbGI

0\_pt\_9.00\_10.00\_PbGi



Entries Mean DMS

intrine Asso

0\_pt\_3.00\_3.50\_PbGi





10000

5000



-----







0\_pt\_5.0\_6.0\_PbSc









0\_pt\_6.0\_7.0\_PbSc











0\_pt\_10.0\_12.0\_PbSc

25000 20000 25000

20000

15000

10000

5000

Entries Mean

0.1606











0.1586



0\_pt\_8.00\_9.00\_PbGI

25000

10000





















### 7. ALL Analysis

- Run-by-run  $A_{LL}$  calculation.
  - $\because$  Run-by-run prescale make run-effective efficiency.
- Statistics requirement.

For signal region:  $N_{++} + N_{+-} > 10$ 

For side region:  $N_{++} > 0 \&\& N_{+-} > 0$  to avoid dividing by zero.

• Choice of  $P_T$  binning.

$$\langle P_T^{\pi^0} \rangle = \frac{\langle P_T^{\pi^0 + BG} \rangle - r \langle P_T^{BG} \rangle}{1 - r}$$

| $P_T$ bin (GeV/c) | $\langle P_T \rangle$ (Run12) | $\langle P_T \rangle$ (Run13) | $\langle P_T \rangle$ (Comb.) |
|-------------------|-------------------------------|-------------------------------|-------------------------------|
| 2.0-2.5           | 2.2757e+0                     | 2.2801e+0                     | 2.2795e+0                     |
| 2.5-3.0           | 2.7618e+0                     | 2.7627e+0                     | 2.7626e+0                     |
| 3.0-3.5           | 3.2516e+0                     | 3.2507e+0                     | 3.2508e+0                     |
| 3.5-4.0           | 3.7458e+0                     | 3.7440e+0                     | 3.7442e+0                     |
| 4.0-4.5           | 4.2415e+0                     | 4.2401e+0                     | 4.2403e+0                     |
| 4.5-5.0           | 4.7387e+0                     | 4.7378e+0                     | 4.7379e+0                     |
| 5.0-6.0           | 5.4475e+0                     | 5.4460e+0                     | 5.4462e+0                     |
| 6.0-7.0           | 6.4458e+0                     | 6.4454e+0                     | 6.4454e+0                     |
| 7.0-8.0           | 7.4445e+0                     | 7.4454e+0                     | 7.4452e+0                     |
| 8.0-9.0           | 8.4470e+0                     | 8.4471e+0                     | 8.4472e+0                     |
| 9.0-10.           | 9.4507e+0                     | 9.4512e+0                     | 9.4511e+0                     |
| 1012.             | 1.0824e+1                     | 1.0824e+1                     | 1.0824e+1                     |
| 1215.             | 1.3140e+1                     | 1.3140e+1                     | 1.3140e+1                     |
| 1520.             | 1.6615e+1                     | 1.6627e+1                     | 1.6624e+1                     |

### 7. ALL Analysis

• Statistical uncertainty of  $A_{LL}$ 

$$\begin{split} (\Delta A_{LL})^2 = & (\frac{1}{P_B P_Y} \frac{2RN_{++}N_{+-}}{N_{++} + RN_{+-})^2})^2 \left( (\frac{\Delta N_{++}}{N_{++}})^2 + (\frac{\Delta N_{+-}}{N_{+-}})^2 + (\frac{\Delta R}{R}) \right)^2 \\ & + \left( (\frac{\Delta P_B}{P_B})^2 + (\frac{\Delta P_Y}{P_Y})^2 \right) A_{LL}^2 \end{split}$$

, where  $\sigma_{N_{\gamma\gamma}} = \sqrt{\frac{\overline{k^2}}{\overline{k}}N_{\gamma\gamma}}$  due to multiplicity.

- The validity of above uncertainty Eq. and unknown syst. are tested by bunch shuffling.
- The run-by-run  $A_{LL}$  is fit with constant. Pattern-by-pattern fitting to avoid false  $A_{LL}$ due to the ghost cluster.

| $P_T$ (GeV) | $k_{en}^2$ P, E | $k_{en}^2$ S, E | $k_{en}^2$ P, O | $k_{en}^2$ S, O |
|-------------|-----------------|-----------------|-----------------|-----------------|
| 2.0-2.5     | 1.0591          | 1.1266          | 1.0592          | 1.1222          |
| 2.5-3.0     | 1.0438          | 1.1077          | 1.0440          | 1.1066          |
| 3.0-3.5     | 1.0358          | 1.0975          | 1.0353          | 1.0979          |
| 3.5-4.0     | 1.0303          | 1.0908          | 1.0303          | 1.0892          |
| 4.0-4.5     | 1.0265          | 1.0830          | 1.0259          | 1.0845          |
| 4.5-5.0     | 1.0222          | 1.0775          | 1.0221          | 1.0771          |
| 5.0-6.0     | 1.0325          | 1.1148          | 1.0325          | 1.1130          |
| 6.0-7.0     | 1.0247          | 1.1007          | 1.0249          | 1.1013          |
| 7.0-8.0     | 1.0217          | 1.0925          | 1.0205          | 1.0879          |
| 8.0-9.0     | 1.0176          | 1.0790          | 1.0172          | 1.0798          |
| 9.0-10.     | 1.0157          | 1.0757          | 1.0162          | 1.0754          |
| 1012.       | 1.0227          | 1.0965          | 1.0265          | 1.1065          |
| 1215.       | 1.0297          | 1.1243          | 1.0263          | 1.1014          |
| 1520.       | 1.0318          | 1.1108          | 1.0301          | 1.0947          |

# 7. ALL Analysis

• Ghost clusters.

Decay time of clusters in PHENIX EMCal: 3 BCLK.

- $\Rightarrow$  Source of low energy background cluster.
- $\Rightarrow$  Source of false  $A_{LL}$  at low  $P_T$ .
- $N_r$ : average number of real clusters,  $N_g$ : average number of ghost clusters.

 $N_0 = N_r$   $N_1 = N_r + N_g$   $N_2 = N_r + 2N_g$   $N_3 = N_r + 3N_g$   $N_4 = N_r + 3N_g$   $N_5 = N_r + 3N_g$   $N_6 = N_r + 3N_g$   $N_7 = N_r + 3N_g$ 

. . .

- For "SOOS" pattern For "S"  $\binom{N_r}{2} + \binom{N_r+3N_g}{2} + \binom{N_r+3N_g}{2} + \binom{N_r+3N_g}{2} + \binom{N_r+3N_g}{2} \cdots$ For "O"  $\binom{N_r+N_g}{2} + \binom{N_r+2N_g}{2} + \binom{N_r+3N_g}{2} + \binom{N_r+3N_g}{2} + \cdots$ For "OSSO" pattern, similar but opposite situation occurs.  $\Rightarrow$  That's how false  $A_{LL}$  at low  $P_T$  due to the ghost clusters.
- Cure: ToF cut to reject the ghost clusters.

pattern-by-pattern background correction.

## 8. QA: ALL Analysis – Bunch shuffling

- Bunch shuffling is boot-strapping method to extract the statistical uncertainty by model independent way.
  - : The valid of the uncertainty Eq. and the existence of unknown syst. can be checked.
- 1. 40,000 random spin patterns are generated.
  - 2. Run-by-run  $A_{LL}$  is calculated.
  - 3. Const. fit and  $\chi^2_{re}$  is obtained.
  - 4. Measured and theoretical  $\chi^2_{re}$  distributions are compared.
- Good agreement is achieved.

That means the uncertainty Eq. is valid and no unknown syst.















Bunch Shuffling(2 reduced Total Even



















































Bunch Shuffling $\chi^2_{reduced}$  Back Odd



Bunch Shuffling 2 Back Odd

Mean 1.054 RMS 0.1922





















### 8. QA: $A_{LL}$ Analysis – $A_L$ Measurement

- Because strong interaction is parity invariant,  $A_L$  should be zero.
- Measurement procedure is same to  $A_{LL}$ .



### 8. QA: ALL Analysis – Parallel Cross Check

• For Run13, intensive cross check has been done with Geogia University student. Perfect agreements are achieved.



| $P_T$   | $A_{LL}^{\pi^0}(H)$ | $\Delta A_{LL}^{\pi^0}(H)$ | $A_{LL}^{\pi^0}(I)$ | $\Delta A_{LL}^{\pi^0}(I)$ | Comp.     |
|---------|---------------------|----------------------------|---------------------|----------------------------|-----------|
| 2.0-2.5 | 9.293e-4            | 1.206e-3                   | 9.269e-4            | 1.206e-3                   | 1.943e-3  |
| 2.5-3.0 | -1.565e-3           | 8.899e-4                   | -1.565e-3           | 8.899e-4                   | -3.886e-4 |
| 3.0-3.5 | 6.651e-5            | 7.920e-4                   | 6.788e-5            | 7.920e-4                   | -1.719e-3 |
| 3.5-4.0 | 3.860e-5            | 7.945e-4                   | 3.872e-5            | 7.945e-4                   | -1.504e-4 |
| 4.0-4.5 | 1.077e-3            | 8.619e-4                   | 1.078e-3            | 8.619e-4                   | -1.274e-3 |
| 4.5-5.0 | -2.017e-5           | 9.794e-4                   | -2.190e-5           | 9.794e-4                   | 1.764e-3  |
| 5.0-6.0 | 4.812e-4            | 8.705e-4                   | 4.815e-4            | 8.705e-4                   | -2.362e-4 |
| 6.0-7.0 | 1.524e-3            | 1.204e-3                   | 1.524e-3            | 1.204e-3                   | -1.546e-4 |
| 7.0-8.0 | 7.147e-4            | 1.708e-3                   | 7.152e-4            | 1.708e-3                   | -2.922e-4 |
| 8.0-9.0 | 4.427e-3            | 2.432e-3                   | 4.425e-3            | 2.432e-3                   | 6.568e-4  |
| 9.0-10  | 6.532e-3            | 3.339e-3                   | 6.535e-3            | 3.339e-3                   | -7.712e-4 |
| 1012.   | 3.813e-3            | 3.613e-3                   | 3.813e-3            | 3.613e-3                   | 2.112e-5  |
| 1215.   | 3.779e-3            | 5.672e-3                   | 3.785e-3            | 5.672e-3                   | -9.829e-4 |
| 1520.   | 7.641e-3            | 1.132e-2                   | 7.641e-3            | 1.132e-2                   | 5.637e-6  |

