Search for mini-QGP in pp using high multiplicity FVTX trigger

Seyoung Han (Ewha/RIKEN)

Itaru Nakagawa (RIKEN)

Kevin Insik Hahn (Ewha)

Contents

- Introduction for mini-QGP
- FVTX High multiplicity trigger system
- Performance at PHENIX Run 15
- Future plan

PHENIX coordinate system

Elliptic flow of heavy ion collision

Two particle correlation

Second harmonics coefficient of Fourier transformation

Elliptic flow

Elliptic flow
$$\frac{1}{N_{trig}} \frac{dN^{pair}}{d\Delta\phi} \sim 1 + 2(v_2)^2 \cos(2\Delta\phi)$$

(Jet)Near-side ridge structure

Ridge structure supposed to be...

- 1. Evidence of QGP (Collective flow)
- 2. Initial geometry

QGP formed only in AA(?)

- Quark gluon plasma found in AA collisions.
- p+A, d+A
 - Small systems.
 - References for cold nuclear matter effects.
- p+p
 - Reference for free from QGP
- Now it cannot be sure.

pPb ridge structure CMS experiment

Recently, CMS reported that they found near side long range ridge structure in p-Pb collision, especially events which total number of detected particles are larger than 110.

pp ridge structure CMS experiment

PHENIX p+Au d+Au ³He+Au

$$v_2^{pAu} < v_2^{dAu} \le v_2^{^3HeAu}$$

This ordering is expected from initial state.

FVTX trigger system

Why FVTX?

- Very weak correlation between CNT(central rapidity) and BBC(forward rapidity).
- FVTX located closer to CNT than BBC
 - Can expect stronger correlation than BBC-CNT
 - FVTX high multiplicity is introduced by a new standard for event classification for pp.

Run15 Integrated FVTX Trigger

Date

Online vs. offline tracks

pp 200GeV North

We can find some off-diagonal part constantly except for the Au-going side and Al-going side.

pp 200GeV South

pAu 200GeV South (Au-going)

Summary for online vs. offline study

- We can find off-diagonal area except for Augoing side and Al-going side.
- Still in the middle of studying.

Correlation function

1. Calculate $\Delta \varphi$

$$\Delta \phi = \phi_{associated} - \phi_{triggered}$$

2. Mix event & Real event

- Remove limited acceptance effect
- Get 3 particles from other events

3. Correlation function

$$C(\Delta\phi, \Delta\eta) = \frac{\int N_{trk,M} \, d\phi \, d\eta}{\int N_{trk,R} \, d\phi \, d\eta} \frac{N_{trk,R}(\Delta\phi, \Delta\eta)}{N_{trk,M}(\Delta\phi, \Delta\eta)}$$

We deal with projection to phi plane of 2D histogram.

This example is BBCs CNT correlation function.

v_n calculation

1. Get the fitting function

$$F(\Delta \phi) = N_0 (1 + \sum_{n=1}^{3} 2C_n \cos(n\Delta \phi))$$

- 2. c_n include $2v_n$ parameters : $C_n = v_n^a * v_n^b = C_n^{ab}$
- 3. To calculate v_n , need 3 sub combinations

$$C_n^{ab} = v_n^a * v_n^b$$

$$C_n^{bc} = v_n^b * v_n^c$$

$$C_n^{ac} = v_n^a * v_n^c$$

$$V_n^a = \sqrt{\frac{a^c}{n^a}}$$

$$v_n^a = \sqrt{\frac{C_n^{ab}C_n^{ac}}{C_n^{bc}}}$$

Ex) a=BBCs, b=BBCn, c=CNT a=FVTXn, b=FVTXs..

CNT FVTXs correlation functions

CNT FVTXn correlation functions

FVTXs FVTXn correlation

v_n result of CNT

- Minimum bias event
- FVTX multiplicity event class

- Finite v₂ observed
- Could be biased

Future plan

- From v₂ result get the physics out of it.
- Improvement performance of FVTX trigger for the future use.

2015 Japan Korea PHENIX collaboration meeting

THANK YOU

pAu 200GeV North (p-going)

CNT BBC correlation: CNT

- Minimum bias event
- FVTX multiplicity event class

Finite v2 observed

Eccentricity Scaling

 ε_2 : Glouber (Round nucleon)

$$\frac{v_2^{dAu}}{\varepsilon_2^{dAu}} < \frac{v_2^{^3HeAu}}{\varepsilon_2^{^3HeAu}} < \frac{v_2^{pAu}}{\varepsilon_2^{pAu}}$$

- The ordering now changes and p+Au becomes largest due to round nucleon assumed in Glouber calculation.
- Small system with shorter lifetime would not fully reflect initial geometry information