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o J.L 54l Direct reactions

m an excellent tool to study nuclear structure

m single-step and very fast, 10722
(time needed for the projectile to traverse the target)

m few nucleons participate, small momentum transfer
— selectivity, use as a spectroscopic tool

m peripheral collisions, surface dominated
m for large impact parameters the core fragment remains largely unaffected
Ve~ Vp

m experimentally: detect incident projectile and resulting fragment(s)
— probe of peripheral character of the reaction
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o Lot =l Factorization of the cross section

m removing a nucleon with quantum numbers o = (n,/,s,j, m,t,):
nucleon removal operator Oy, acting on initial state | W)

m reaction amplitude: .
Al = (V7" 0a|VF)

and cross section o/f = | A |2
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o Lot =l Factorization of the cross section

m removing a nucleon with quantum numbers o = (n,/,s,j, m,t,):
nucleon removal operator Oy, acting on initial state | W)

m reaction amplitude:
it _ A A
Ag = (V7| 0a V7))
and cross section o/f = | A |2

m sudden approximation: reaction is fast compared to motion of nucleons:
Oq — (—1Y"™ay _p, proportional to annihilation operator a:

Al = GV a1
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o Lot =l Factorization of the cross section

m removing a nucleon with quantum numbers o = (n,/,s,j, m,t,):
nucleon removal operator Oy, acting on initial state | W)

m reaction amplitude:
A/f <\UA 1|Oa|WA>

and cross section o/f = | A |2

m sudden approximation: reaction is fast compared to motion of nucleons:
Oq — (—1Y"™ay _p, proportional to annihilation operator a:

Al = GV a1

® summing over final m, averaging over initial m projections:

. 1 2
olf = ClR (WA | g m| W7
= air i, (I V)

m average over M;, M¢, assuming spherical projectile, or J; = 0:

1

= |k ?
2J; +1

(W7 laeml W = 0P s]
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@t Exal The spectroscopic factor

|1f2

577 |V lacnl VA = oS

m single-particle cross section |C//|? = o;":

o =0 if |Vf)=a Vi)

described reaction dynamics only
m spectroscopic factor S,"(f only depends on the structure of initial and final states
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L.t 5 4l The spectroscopic factor

|1f2

577 |V lacnl VA = oS

P

single-particle cross section |CJ[|? =
of =0 it [Wf)=avi)

described reaction dynamics only

spectroscopic factor S,"(f only depends on the structure of initial and final states

in proton-neutron formalism:
C2S!(T) = C2S with isospin Clebsch-Gordan coefficient

typically calculated in a harmonic oscillator basis — center of mass correction:

2 A N2
c2s— (405 ) s

m spectroscopic factors are not observables, only the cross section is measured
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L%l Reactions with stable beams

(p,2p) reactions on stable targets 80(p,2p)'°N at 500 MeV (TRIUMF)
m proton beam with several hundred MeV

300 f—————1— sl
m short wavelength, deep hole states : I
3/2
m NN cross section small ]
— impulse approximation 200 - |
P4 2 T
C
3
Pi Pa-1 ©
100 -
P2 1
0 Fr—— T e
B pp1 =Pi—P1— P2 -75 -50 —25 0
— excitation energy spectrum “Eriea (MeV)

C. A. Miller et al., Phys. Rev. C 57 (1998) 1756
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L%l Reactions with stable beams

(p,2p) reactions on stable targets 80(p,2p)'°N at 500 MeV (TRIUMF)

m proton beam with several hundred MeV 300 4 1 L
m short wavelength, deep hole states : I
3/2
m NN cross section small ]
— impulse approximation 200 - L
P1 2
Pi Pa-1 ©
100 -
P2 1
0 Fr—— T e
B Pa1 =Pi— Pt — P2 -75 -50 —-25 0
— excitation energy spectrum “Eriea (MeV)

C. A. Miller et al., Phys. Rev. C 57 (1998) 1756

m proton-pair angular correlations
— momentum distribution of protons in the nucleus

m determine orbital angular momentum /
m polarized protons — total angular momentum j
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m challenge: limited resolution, heavier nuclei / higher level density not feasible
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2=l FElectron induced nucleon removal (e,e’p

m advantage: higher resolution

m nucleus is transparent to electrons — study of inner shells
m less distortion of the associated momentum distributions
m disadvantage: small electro-magnetic cross section
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2=l FElectron induced nucleon removal (e,e’p

m advantage: higher resolution

m nucleus is transparent to electrons — study of inner shells
m less distortion of the associated momentum distributions
m disadvantage: small electro-magnetic cross section

observation: T

m summed spectroscopic strength Y S, compared to Mean Field Theory
independent particle shell model (2j+ 1) I

m reduction of the spectroscopic strength by 65 %
— correlations the are not included in the
mean-field approximation

m depletion of states below the Fermi surface and
population of states above it

m no in the (limited) model space of the theory
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L. Lapikas, Nucl. Phys. A 553 (1993) 297
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e 2%l Short-range correlations

m repulsive core of the NN interaction at r < 0.5 fm

m uncertainty principle ApAr < h
— components in the wave function with p ~ 400 MeV/c

m extremely difficult to measure

m beyond the mean field theory (MFT)
but for light nuclei: microscopic variational Monte-Carlo (VMC) calculations
based on realistic NN interactions
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@ .54l Short-range correlations

m repulsive core of the NN interaction at r < 0.5 fm

m uncertainty principle ApAr < h
— components in the wave function with p ~ 400 MeV/c

m extremely difficult to measure

m beyond the mean field theory (MFT)
but for light nuclei: microscopic variational Monte-Carlo (VMC) calculations
based on realistic NN interactions

calculated momentum measurement spectroscopic factor:
distributions
0 . . . . ' T T + ot
' Li(e,e'p)°He 0 VMG 7Li(’3;z’£);:e )?g//g’*g‘ Model | S (07 +27)
10 312 >0* MFT 3 ">2t o
- | MFT 1
10° 1 E VMC 060
' ] 1 | exp 0.58(5)
< 4o b
5 107 b ]
Q-,E 102} b
Q
107

1079

1000 -100 0 I:)ﬁ 200 - 300
Py [MeVic] —— P, [MeVic] —
L. Lapikas et al., Phys. Rev. Lett. 82 (1999) 4404
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@ L5 Correlated pairs

m only ~ 65 % of the nucleons participate in the independent particle motion

m short-range correlations lead to pairs with
large relative momentum and small center of mass momentum

m local density for pairs ~ 5 times larger than nuclear density
— probing dense nuclear matter (neutron stars)

2C(e,e’pN) at JLab

m if one partner of such a pair is struck:
high relative momentum leads to recoil of the
correlated nucleon as well

m measure (e,e’p) and (e,e’pN):

~ 80 % of the nucleons act independently

~ 20 % of the nucleons form correlated pairs
m measure (e,e’pp) and (e,e’pn):

n-p pairs are 18 times more common

— direct effect of the tensor force

il Single nucleons
R. Subedi et al., Science 320 (2008) 1476 . - l:l
n-p n-n p-p
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S Ltotsl \Vith radioactive beams

m production of radioactive ion beams by projectile fragmentation
m ideal beam energy range 50 — 1000 MeV/u

y-detector
fragment separator (optional)

primary target .'

spectrometer

detector:
A ZE, B, X

accelerator secondary

target
~ 100 MeV/u secondary beam

m cocktail beam requires fragment separator
m “bad” beam quality, momentum spread, contamination, emittance
m facilities:

NSCL A1900/S800: ~ 100 MeV/u, Ap = 0.1 — 5 %, dispersion matching possible
GSI FRS: 500 — 1000 MeV/u, Ap <3 %

GANIL SISSI/SPEG: ~ 100 MeV/u, Ap = 0.1 %, energy loss mode

RIKEN BigRIPS/ZeroDegree: ~ 200 MeV/u, Ap <6 %

m intensities of a few particles per second required

— ideal conditions for nucleon removal reactions with radioactive beams
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Lot = 3l Types of reactions

nucleon knockout: quasi-free scattering:
light nuclear target °Be or '2C (p,2p) or (p,pn) using a hydrogen target

[ J
Y
[ J Y [ ]

m pioneering experiments m in the past: (e,e'p) or (p,2p) on stable

using ""Li breakup targets
N. A. Orr et al., Phys. Rev. Lett. 69 (1992) 2050 .
m only way to determine absolute

m now extensively used at: spectroscopic factors

NSCL, GANIL, GSI G. J. Kramer et al., Nucl. Phys. A 679 (2001) 267
m strong absorption: m wide range from weakly bound
reaction happens at surface (valence) to deeply bound (core)
m — probe the outer part of the states
wave-function m — sample entire wave function
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Knockout reactions:

experimental and theoretical
methods

Kathrin Wimmer



o L5 a8 Nuclear targets

for this talk

m “knockout” refers to nucleon removal reactions with a light nuclear target
such as °Be or '2C

m “quasi-free scattering” to (p,2p) or (p,pn) reactions
m why do some people prefer knockout over quasi-free scattering for spectroscopy?
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o Lot sl Nuclear targets

for this talk

m “knockout” refers to nucleon removal reactions with a light nuclear target
such as °Be or '2C

m “quasi-free scattering” to (p,2p) or (p,pn) reactions
m why do some people prefer knockout over quasi-free scattering for spectroscopy?

experimental advantages

m easy to make a thick, pure target
(compared to CH> or liquid H)

m access to both proton
and neutron states
((p,pn) required detection of neutron)
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o Lot sl Nuclear targets

for this talk

m “knockout” refers to nucleon removal reactions with a light nuclear target
such as °Be or '2C

m “quasi-free scattering” to (p,2p) or (p,pn) reactions
m why do some people prefer knockout over quasi-free scattering for spectroscopy?

experimental advantages theoretical advantages
m easy to make a thick, pure target m strong interaction dominated
(compared to CH> or liquid H) neglect Coulomb breakup
m access to both proton m absorptive disk, but core survives
and neutron states — peripheral collisions

((p,pn) required detection of neutron) m surface dominance

like transfer reactions
(there: light ion mean free path)
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o Lot sl Nuclear targets

for this talk

m “knockout” refers to nucleon removal reactions with a light nuclear target
such as °Be or '2C

m “quasi-free scattering” to (p,2p) or (p,pn) reactions
m why do some people prefer knockout over quasi-free scattering for spectroscopy?

experimental advantages theoretical advantages
m easy to make a thick, pure target m strong interaction dominated
(compared to CH> or liquid H) neglect Coulomb breakup
m access to both proton m absorptive disk, but core survives
and neutron states — peripheral collisions

((p,pn) required detection of neutron) m surface dominance

like transfer reactions
(there: light ion mean free path)

well-developed experimental and theoretical techniques allow to determine
m spectroscopic factors, occupation numbers
m spin and parity assignments through momentum distributions
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L5l FEarly experiments

m fast projectile mass A collides with nuclear target
m mass (A— 1) residues are detected
m light fragments are unobserved, final state tagging by y-ray if needed

m sudden approximation:
- A-1., o
ks = 2 ka — ka1

momentum of the struck nucleon Rs is related to the residues RA_1
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@ .54l FEarly experiments

m fast projectile mass A collides with nuclear target
m mass (A— 1) residues are detected
m light fragments are unobserved, final state tagging by y-ray if needed
m sudden approximation:
Fo= 2 T Fay
momentum of the struck nucleon Rs is related to the residues RA_1
m first fragmentation experiment with radioactive beam at Bevalac/LBNL:

"y
m two components in the transverse Liat 0.8 GeV/u on C target
momentum distribution of °Li residues 50

m broad like for stable nuclei ('2C) L

m very narrow
— removal of weakly bound neutrons
uncertainty relation — large spatial extent

do/dp, [arb]

— signature of halo states

it 1 "

1 1
-100 0 100 200
P, [Mev/c]

T. Kobayashi et al., Phys. Rev. Lett. 60 (1988) 2599
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pREAT Limitations

m Coulomb deflection and diffractive scattering affect the transverse distribution
— measure parallel (longitudinal) momentum distributions
m however, much higher resolution is required:
ex: A =50 nucleus with energy of 100 MeV/u p = 22 GeV/c
momentum width of nucleon 50 (halos) — 300 MeV/c
required resolution: Ap/p= 0.5 %
® momentum spread of incident beam: ~ few %
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cp BERT Limitations

m Coulomb deflection and diffractive scattering affect the transverse distribution
— measure parallel (longitudinal) momentum distributions

m however, much higher resolution is required:
ex: A =50 nucleus with energy of 100 MeV/u p = 22 GeV/c
momentum width of nucleon 50 (halos) — 300 MeV/c
required resolution: Ap/p= 0.5 %

m momentum spread of incident beam: ~ few %

solution: dispersion matching

m target at dispersive image

m second magnet compensates, direct measure of ks,

m "'Li at 66 MeV/u on different targets

Be target Nb target "®'Ta target °Be target (large range)
ey } P ey e e S S
sof- ¢ = 20.9 (0.8) MeV/c % b @ = 187 (0.8) MeV/c i [ o =212(07) Mev/c j(nn; o = 209 (0.6) MeV/e
| A A A
; e Pt b
N I A
mf ol 'Y 3
t i 1 E '!g*”'&:!:
0 200 ) o0 00 =) S50 3200 = O 000 3100 =0 3300
p (MeV/c) p (MeV/c) p (MeV/c) p (MeV/c)

N. A. Orr et al., Phys. Rev. Lett. 69 (1992) 2050
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e Ltadll The knockout reaction mechanism

two processes contribute to the knockout reaction with nuclear targets

m diffractive or elastic breakup m stripping or inelastic breakup

® ® &

...
N X

@
m dissociation through two-body m removed nucleon reacts with target
interaction with target (elastic) m excites the target
m forward direction with beam velocity m loses energy or picks up nucleons
m target remains in the ground state from the target

m for light targets Coulomb breakup negligible
m stripping typically dominant
m calculate both processes — incoherent sum compared to experiment

Kathrin Wimmer RIBF Discussion 17



cp BERT Eikonal theor

m scattering of a point projectile of a potential V(r)

projectile
m semi-classical approach: @ - ko
geometrical description in terms of the
impact parameter b b

m incident particle wave number k large

wavelength small compared to changes in V(r) target

m scattered wave: y(F) = exp (ik - 7)o (7)
plane wave and modulating function @ (contains information on potential)

Kathrin Wimmer RIBF Discussion 18



cpEEAE Eikonal theor

m scattering of a point projectile of a potential V(r)

projectile
m semi-classical approach: @ - ko
geometrical description in terms of the
impact parameter b b

m incident particle wave number k large

wavelength small compared to changes in V(r) target

m scattered wave: y(F) = exp (ik - 7)o (7)
plane wave and modulating function @ (contains information on potential)
m Schrdédinger equation:

[”2v2+ Vo) v ()= Ev(0)
2u

- {zfv(o(f).;? - Zﬁ‘z‘ V(r)a)(F)Jerw(F)} exp(ik-F)=0

m approximation: neglect V2w(7) — first order equation for @

Kathrin Wimmer RIBF Discussion 18



WK Eikonal theor

m align Z-axis along kK (b= /x2+ y?)

do i i [
- =——V 0] 7 0] ) — _ 2 2 !
35 P (No(r) — () exp( hv/,w V(Vb?+z )dz)
m neglecting V2w(7') means: projectile
assuming a straight line trajectory k
mv="hk/u

classical incident velocity in the cm frame

Kathrin Wimmer RIBF Discussion 19



Eikonal theor

m align Z-axis along kK (b= /x2+ y?)

I} i z

Z:_Hv(r)w(m — a)(F):exp<—ﬁiv/

—o0

V(VB?+ 22 )dz’)

m neglecting V2w(7') means:
assuming a straight line trajectory
mv="hk/u
classical incident velocity in the cm frame b

projectile

target
m the scattering wave function (z — o)in eikonal approximation:

ye(F) = exp <h'v/ v(\/m)dz’) exp(ik -7) = S(b)er 7

S(b): amplitude of the scattered wave, eikonal elastic S-matrix
for a real potential | S(b)|? = 1

rather simple: one dimensional integration through potential V(r)
generalizes for few-body projectiles

oo
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@ L5 dl Few-body models

m two-body projectile (bound):

valence ;
. core ¢ and valence particle v

A I'v
.

. target

m constituents interact with target through
effective interactions Vj; (j = v,c)
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@ L5 dl Few-body models

m two-body projectile (bound):
core ¢ and valence particle v

valence
AN I'v

. m constituents interact with target through
., target

effective interactions Vj; (j = v,c)

m Vj; can be obtained from:
phenomenological optical models, or folding models

m at high energies (> 50 MeV/u):
double-folding of densities and effective NN interaction

Valn) = [ 47 [ diapyrpi(re) (G + 7 — )
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cpEEAE Few-body models

m two-body projectile (bound):
core ¢ and valence particle v

valence
) AN I'v

R target m constituents interact with target through

effective interactions Vj; (j = v,c)

m Vj; can be obtained from:
phenomenological optical models, or folding models

m at high energies (> 50 MeV/u):
double-folding of densities and effective NN interaction

Valn) = [ 47 [ diapyrpi(re) (G + 7 — )

m Schrddinger equation for incident projectile with K in cm frame
[T+ U(F,R)+H,—E]y"(F,R)=0

H,, projectile internal Hamiltonian, U(7, ﬁ) total projectile-target interaction
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cpEEAE Few-body models

m two-body projectile (bound):
core ¢ and valence particle v

valence
AN I'v

R target m constituents interact with target through

effective interactions Vj; (j = v,c)

m Vj; can be obtained from:
phenomenological optical models, or folding models

m at high energies (> 50 MeV/u):
double-folding of densities and effective NN interaction

Valn) = [ 47 [ diapyrpi(re) (G + 7 — )

m Schrddinger equation for incident projectile with K in cm frame
[T+ U(F,R)+H,—E]y"(F,R)=0

H,, projectile internal Hamiltonian, U(7, ﬁ) total projectile-target interaction
m adiabatic (sudden) approximation H, — —&y ground state energy

[Th+U(F,R)— (E+&)| y*I(F,R)=0
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AT Few-body eikonal model

m scattering wave product of incident wave and modulating function o(7, R )
v (7, R)=e* Foo(F)(F,R)
@ projectile ground state wave function, AiK = /2 (E + &)

Kathrin Wimmer RIBF Discussion 21



AT Few-body eikonal model

m scattering wave product of incident wave and modulating function (7 I-??)
Y7, R) =X F go(F)oo(F )

¢o projectile ground state wave function, AK = 4 /2/.L (E+¢g)
m into Schradinger equation and neglecting V2o (7, R ) gives

)
R w(?,ﬁ):exp(—ﬁi‘//w N )dZ’)

N
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AT Few-body eikonal model

m scattering wave product of incident wave and modulating function (7 I-??)
Y7, R) =X F go(F)oo(F )

¢o projectile ground state wave function, AK = 4 /2/.L (E+¢g)
m into Schradinger equation and neglecting V2o (7, R ) gives

)
R w(?,ﬁ):exp(—ﬁi‘//w N )dZ’)

N

m eikonal few-body wave function

YR R) = Solbe) Su(b)e™ 7 o (F) projectiic @ -5

S;(by) are the eikonal elastic S-matrices for
independent scattering of v or ¢ off the target

m adiabatic: r' only parameter, S-matrices are
calculated at fixed b; and by
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AT Few-body eikonal model

m scattering wave product of incident wave and modulating function (7 I-??)
Y7, R) =X F go(F)oo(F )

¢o projectile ground state wave function, AK = 4 /2/.L (E+¢g)
m into Schradinger equation and neglecting V2o (7, R ) gives

)
R w(?,ﬁ):exp(—ﬁi‘//w N )dZ’)

N

m eikonal few-body wave function

WP, R ) — So(be)Sy(by)e™® A 9o(F) orojectile @5

S;(by) are the eikonal elastic S-matrices for
independent scattering of v or ¢ off the target

m adiabatic: r' only parameter, S-matrices are
calculated at fixed b; and by

m probability for projectile surviving (in ground state), i.e. the elastic S-matrix for the

projectile is Sp(b) = (0| Sc(be)Sv(by)| o)
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% Cross sections

m separation of dynamics (S;) from structure (wave function to be probed)

Sp(b) = (¢o|Sc(bc)Sy(bv)|¢o)

Kathrin Wimmer RIBF Discussion 22



P S Cross sections

m separation of dynamics (S;) from structure (wave function to be probed)

Sp(b) = (¢o|Sc(bc)Sy(bv)|¢o)

m total cross section to populate state j (dE = 2mbdb):

0= [ 1(9:(6:) () 9o) — Gol* 20
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e Ltdll Cross sections

m separation of dynamics (S;) from structure (wave function to be probed)
Sp(b) = (90| Sc(be)Su(by)| o)
m total cross section to populate state j (dE = 2mbdb):
0= [ 1(6/1S0(5:)5.(50) 60) — [? 25
m elastic cross section:

60 = [ 1(00]Se(be)S.(tv) o) 17 27
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e Ltdll Cross sections

m separation of dynamics (S;) from structure (wave function to be probed)
Sp(b) = (90| Sc(be)Su(by)| o)
m total cross section to populate state j (dE = 2mbdb):
6= [ 1(0]S:(0)S,(b3)] ) — 8ol 2b
m elastic cross section:
00 = [ 1(go]Se(8e)S:(by)]do) — 17 2mbab
m total reaction cross section:

reac = [ (1 1(601S0(5:)5.(b1)I o) ) 20y

Kathrin Wimmer RIBF Discussion 22



%4 Elastic breakup cross section

m diffraction due to absorptive (imaginary) part
and refraction in the real part of the potential
together are called elastic breakup (diffraction)

diffraction:

m excite projectile to continuum with wave function ¢,

m integrate over continuum for projectile,
target remains in ground state

s = [ [ (95 150(6:)5u(8,)100)  2xb o ak

refraction: :
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%4 Elastic breakup cross section

m diffraction due to absorptive (imaginary) part . .
and refraction in the real part of the potential diffraction:
together are called elastic breakup (diffraction)

m excite projectile to continuum with wave function ¢,

m integrate over continuum for projectile,
target remains in ground state

O'duff—//‘ 0 |Sc(be)Sy )|¢o)| 2nb db dk

refraction: :

m using completeness relation:

Y 00) ¢b|+/dk 9¢)(6

bound

gives the total elastic (diffractive) cross section
i = [ ((60]150(8:)S:(5)1%] o) — |{00] S(b6) S (1) o)) 20y

under the assumption that there is only one bound state of the projectile

Kathrin Wimmer RIBF Discussion 23



LesSl Stripping cross section

m total absorption cross section (target excitation):

Oabs = Oreac — Odiff = / (1 - <¢O ‘ |Sc(bc)sv(bv)|2‘ ¢o>) 2nb db

m |S(b))|? is the probability that j = v,c survives the collision at impact parameter b
and the target remains in the ground state

m 1—|S;(b;)[?: probability that the target gets excited
and j is absorbed from the elastic channel

Kathrin Wimmer RIBF Discussion 24



LesSl Stripping cross section

m total absorption cross section (target excitation):

Oabs = Oreac — Odiff = / (1 - <¢O ‘ |Sc(bc)sv(bv)|2‘ ¢o>) 2nb db

m |S(b))|? is the probability that j = v,c survives the collision at impact parameter b
and the target remains in the ground state

m 1—|S;(b;)[?: probability that the target gets excited
and j is absorbed from the elastic channel

m rewriting:

18682 =[Sy [B(1 = [Sef?) + S (1 = |8y [*) + (1 = [Se ) (1 = [Su[?)
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Stripping cross section

m total absorption cross section (target excitation):

Oabs = Oreac — Odiff = / (1 - <¢O ‘ |Sc(bc)sv(bv)|2‘ ¢o>) 2nb db

m |S(b))|? is the probability that j = v,c survives the collision at impact parameter b
and the target remains in the ground state

m 1—|S;(b;)[?: probability that the target gets excited
and j is absorbed from the elastic channel

m rewriting:
1= 18eSu[? =[Sy F(1 = [Sef?) + 8ol (1 = [S[7) + (1 = |Sc[*) (1 = [Su[?)

m cross section for stripping v from the projectile, exciting the target and c is only
elastically scattered:

Os = [ (60]Sc(8e) P(1 ~ [S.(80) ) o) 27D
m note that o, = 0 if interaction Vi, is real (non-absorptive) — |S,(by)|? = 1

Kathrin Wimmer RIBF Discussion 24



e Ltdll Cross section for elastic break up

m two processes contribute, diffractive breakup and stripping

m they differ in their effect on the target, in stripping the target gets excited
— measure the target excitation energy
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e Ltdll Cross section for elastic break up

m two processes contribute, diffractive breakup and stripping

m they differ in their effect on the target, in stripping the target gets excited
— measure the target excitation energy
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e Ltdll Cross section for elastic break up

m two processes contribute, diffractive breakup and stripping

m they differ in their effect on the target, in stripping the target gets excited
— measure the target excitation energy

m directly: experimentally not feasible (thick target, small energy)
— determine the target excitation energy from missing mass spectroscopy

m need to measure the removed particle as well
m proton knockout from loosely bound €B and °C and well-bound 22Na

m peak in missing mass spectrum at Myss = M(°Be) = 8.395 GeV/c? reveals
diffraction process

k) E @ 0T k)
g 2 | °B @ 86.7 MeV/u £ | °C @ 97.9 MeViu g 2f *Mg @ 93 MeV/u
18f 0sf-
"
B ok | g A 5 §
= £ osf /s =
5 raf 3 3
2 4 g * 5 08 t i
S 2f = 0 3 i e
£ E . £ . £ osl |
s s osf s % iy
3D osf 3 A- 3 H
| osE 1 R 8 o2f o 3 o4f By
. &
0af J ™ o2 |
02k 01 L !
L L L L L L M, L o L L I L
835 8a eas 65 8% 86 85" 84 645 85 8% 86 5% sa B 85 8% 86
M, [GeV/c?] M, [GeVic?] M, [GeV/c?]

K. Wimmer et al., Phys. Rev. C 90 (2014) 064615
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o LtEdll Separation energy dependence

m earlier work suggested that the diffractive 4oF 2 clhonal
breakup cross section scales with separation asf- —1d,.

energy as 1/+/Sp

m for the case of 2Mg the relative cross section
changes by a factor of two between assumed
Sp = 0.1 and 20 MeV

m 1/,/S, would suggest a factor of 6

—2s
1

2

Diffraction fraction [%]
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o LtEdll Separation energy dependence

m earlier work suggested that the diffractive “F o oo
breakup cross section scales with separation ; —1d,.

(%)
@
T

—2s
1

energy as 1/+/Sp

m for the case of 2Mg the relative cross section
changes by a factor of two between assumed
Sp = 0.1 and 20 MeV

m 1/,/S, would suggest a factor of 6

2

N
@
T

Diffraction fraction [%]
S 8
T T

10 1 10
S [MeV]
P
m eikonal theory combined with USD shell model 4oF S
spectroscopic factors reproduces experiment 3sf- -
€0.

Diffraction fraction [%]
n w
(42 o
e

n
=}
IREEERE

o
T
——

K. Wimmer et al., Phys. Rev. C 90 (2014) 064615 10:.....\ N Ll
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@ .54l Separation energy dependence

m earlier work suggested that the diffractive “F o oo
breakup cross section scales with separation ; —1d,.

(%)
@
T

—2s
1

energy as 1/+/Sp

m for the case of 2Mg the relative cross section
changes by a factor of two between assumed
Sp = 0.1 and 20 MeV

m 1/,/S, would suggest a factor of 6

2

Diffraction fraction [%]
% 8
matare

n
=]
T

10 1 10
S [MeV]
P
m eikonal theory combined with USD shell model 3 + - exp
spectroscopic factors reproduces experiment asf- -
€0.

m for the range of separation energies studied
here S, = 0.14 (8B) and 16.79 MeV (*®Mg)

n
a
T
—a

Diffraction fraction [%]
38
T

n
=}
T T T T

— excellent agreement between the reaction
theory and experiment

o
T
——

K. Wimmer et al., Phys. Rev. C 90 (2014) 064615 10:.....\ N Ll
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LesSl Momentum distributions

m momentum distribution of core (for stripping):

dP(kC7 bV)
— ——=——2nb,d
dkc / dk o by

valence

m with 7 =% —7 and b, = |b, — 7|
m and no spin-orbit term

target

m core momentum at fixed by :

dP(k, b\,) 1 / ik P 2
—_—— = Sc(b dar
dk, 218 2/+1 | (b ) Yim (7 )d7 |

H. Esbensen et al., Phys. Rev. C 53 (1996) 2007

m integrating over the transversal components yields:

71-2 2/+1 Z/ )Iz)b/|sc(bc)‘2 \»/ eiszzll’/m(F)dz

2
d2(by — be) 27b, db,

o
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> REXE

Momentum dis

ibu

m it is generally assumed that the momentum
distribution for elastic breakup (diffraction) is the

same as for stripping
m NSCL measurement suffers from acceptance issues

m clear difference in the transversal momentum

distribution

Kathrin Wimmer

K. Wimmer et al., in prep.
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> REXE

Momentum distribu

m it is generally assumed that the momentum
distribution for elastic breakup (diffraction) is the

same as for stripping

m NSCL measurement suffers from acceptance issues
m clear difference in the transversal momentum

distribution

K. Wimmer et al., in prep.

new measurements of B with proton - "Be

coincidences

T T T

80
T T T T
(@) siripping mechanism

do/dp (Counts)
a
S

T
(b) diffraction mechanism

do/dp (Counts)

L
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[
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S. L. Jin et al., Phys. Rev. C 91 (2015) 054617

* Il
1600 1700

"Be longitudinal momentum (MeVic)

m limited resolution: — new experiments required

Kathrin Wimmer

RIBF Discussion
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G 2=l Beyond the eikonal approximation

the eikonal approximation
m does not conserve the energy

m does not include energy transfer between cm and relative motion degrees of
freedom of residue and valence nucleon

m assumes a straight line path
— in the eikonal approximation the momentum distributions are symmetric

Kathrin Wimmer RIBF Discussion 29



G 2=l Beyond the eikonal approximation

the eikonal approximation
m does not conserve the energy

m does not include energy transfer between cm and relative motion degrees of
freedom of residue and valence nucleon

m assumes a straight line path
— in the eikonal approximation the momentum distributions are symmetric

1.2 15~ 9
56,%Be 54 MeV/nucleon 10 C+Be, 54 MeV/nucleon o_4°

= 1 - A g

) 1 k{‘ N E

= N

; 08 6.09 MeV,‘/ / A\‘\ (2 10°

= C 1 N, «o

K 4 ' A e}

5 06 "/‘ / N\ A E

= \ 4

3 I i 0, gs 3 Al a 10

204 Y ! \ Q

@ k / \ a =

2 £ / \ \A\ S

< e / N A, B 3

G g2 ka / N © 10

3 4 A\
// \\
T aa5 45 155 a6 44 444 448 452 456
p//(“(;) (GeVic) p,( C(gs)) (GeVic)

m asymmetry observed in the knockout from halo nuclei can be described by

continuum discretized coupled channels (CDCC) calculations
J. A. Tostevin et al., Phys. Rev. C 66 (2002) 024607
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%4 Ingredients needed for calculation

m potentials for core-target and valence nucleon-target interactions

Val) = [ a7 [ diapyrpi(ra) (G + 7 — )

— densities from Hartree-Fock calculations
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m potentials for core-target and valence nucleon-target interactions

Val) = [ a7 [ diapyrpi(ra) (G + 7 — )

— densities from Hartree-Fock calculations

m obtain the S-matrices from the potentials:

K
S=exp —ZI—E/U(b,z)dz
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m potentials for core-target and valence nucleon-target interactions

Val) = [ a7 [ diapyrpi(ra) (G + 7 — )

— densities from Hartree-Fock calculations

m obtain the S-matrices from the potentials:

K
S=exp —ZI—E/U(b,z)dz

m wave function @y: many-body overlap function
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S L= |ngredients needed for calculation

m potentials for core-target and valence nucleon-target interactions

Val) = [ a7 [ diapyrpi(ra) (G + 7 — )

— densities from Hartree-Fock calculations
m obtain the S-matrices from the potentials:

K
S=exp —ZI—E/U(b,z)dz

m wave function @y: many-body overlap function
in practice not available
— calculate single-particle wave function in a Woods-Saxon potential

— d ) 1
V(r)—VOf(r)+( 'S)VSOEI((I') with f(f)—m

radius ry to reproduce the HF rms radius for the orbit,
set V to reproduce the experimental binding energy

Kathrin Wimmer RIBF Discussion 30



@ L.t 54l Hartree-Fock calculations

Hartree-Fock calculations are performed to obtain the
m density distribution of the core
m rms radii of the valence nucleon orbits

using the Skyrme X interaction B. A. Brown et al., Phys. Rev. C 58 (1998) 220
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o L%l Hartree-Fock calculations

Hartree-Fock calculations are performed to obtain the
m density distribution of the core
m rms radii of the valence nucleon orbits

using the Skyrme X interaction

B. A. Brown et al., Phys. Rev. C 58 (1998) 220

Example: neutron knockout from 240

20 density distribution orbital | E (MeV) | fimg (fm)

0.12f — protons 1s, | -27.046 | 2257

— neutrons 1pg/2 | -17.056 2.857

010 1 1py, | 12528 | 2.952

— 0.08} 1ds2 -6.301 3.430

P 2si;, | -3.708 | 4.072

£ 005} 1d3/2 -0.209 | 4539

U

0.04}
0.02f
0.00
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@ LBl  S-matrix

S-matrices for core and valence particle on target need:
m potentials for core-target and valence nucleon-target interactions
m double-folding integral of densities and effective NN-interaction
m for the core: use Hartree-Fock result

m for °Be: assume Gaussian density distribution with rms radius 2.36 fm
(2.32 fm for 2C)
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@ LBl  S-matrix

S-matrices for core and valence particle on target need:
m potentials for core-target and valence nucleon-target interactions
m double-folding integral of densities and effective NN-interaction
m for the core: use Hartree-Fock result
m for °Be: assume Gaussian density distribution with rms radius 2.36 fm
(2.32 fm for '2C)
example: neutron knockout from 24O on ®Be at 100 MeV/u

S-matrix for n on ° Be S-matrix for 220 on ° Be

10| — real
— imaginary
08f| — norm

0.6

0.2}

0.0

—0.2!
0

RIBF Discussion

Kathrin Wimmer



Lo sal \Wave functions

m initial bound state wave function or radial overlap function

m calculated in a Woods-Saxon potential with V4 adjusted to reproduce the
experimental binding energy (S, + E(j*))

m fixed diffuseness ag = 0.7 fm

m spin-orbit strength Vspo = 6 MeV, same ry,a9
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Lo sal \Wave functions

initial bound state wave function or radial overlap function

calculated in a Woods-Saxon potential with V, adjusted to reproduce the
experimental binding energy (S, + E(j*))

fixed diffuseness ap = 0.7 fm

spin-orbit strength Vso = 6 MeV, same ry,a9

radius is constrained by the Hartree-Fock calculations: choose ry such that the
wave function has a rms radius of
A
fep = h
sp A_1 HF
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> REXE

Wave functions

m initial bound state wave function or radial overlap function
m calculated in a Woods-Saxon potential with V4 adjusted to reproduce the

experimental binding energy (S, + E(j*))
m fixed diffuseness ag = 0.7 fm

spin-orbit strength Vso = 6 MeV, same ry,a9

m radius is constrained by the Hartree-Fock calculations: choose ry such that the
wave function has a rms radius of

A
o =\ AT

THF

example: neutron single-particle wave functions with a core of 230:

V(r) (MeV)

40F

20}

0

a0t

40|

—20}

—40}

-60

r (fm)

Kathrin Wimmer

r (fm)

RIBF Discussion

2s1p 1d;, 2p3p
201 20}

3 0 3 0
=3 =3
= —20} = —20}
= =

— VO | R —a0}

— Woods-Saxon

— spin-orbit _60F —60}

— ¢(r)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9

r (fm)



e Ltdll Cross sections

m in the experiment only the residue is detected, not removed nucleon or the target
m calculate the single-particle cross section (neglecting Coulomb breakup)

Osp = Odiff + Ostr
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e Ltdll Cross sections

m in the experiment only the residue is detected, not removed nucleon or the target
m calculate the single-particle cross section (neglecting Coulomb breakup)

Osp = Odiff + Ostr

m example: neutron knockout from 2O on °Be at 100 MeV/u
from the S-matrices and the overlap functions calculated previously:

orbit | Osr (Mb) | Oyt (Mb) | Osp (Mb)
1052 18.5 6.0 245
2512 17.1 5.4 226
1d3/2 25.8 10.3 36.1
2p3/2 31.4 13.1 445
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Cross sections

m in the experiment only the residue is detected, not removed nucleon or the target
m calculate the single-particle cross section (neglecting Coulomb breakup)

Osp = Odiff + Ostr

m example: neutron knockout from 2O on °Be at 100 MeV/u
from the S-matrices and the overlap functions calculated previously:

orbit | Osy (Mb) | Ogirt (Mb) | Osp (Mb)
105/ 185 6.0 245
255 174 5.4 22,6
1d3/2 25.8 10.3 36.1
2p3/2 31.4 13.1 44.5

m O, depends strongly on the chosen ry
— constrain rgp by Hartree-Fock rms

m dependence on g, rather weak — constant ag = 0.7 fm for consistency
m Vso has little influence

Kathrin Wimmer RIBF Discussion 34



W L5l Cross sections

60— . . . . . 100— . . . . . .
— 25y
50 1 80} — 1ds, |
— 2p3;
o 40t {1 = L |
g g 60
& 30} 1 & a0l |
20} 1 20} \o\ |
10 L L L L L L L L L L L L L
09 1.0 1.1 12 13 1.4 1 2 3 4 5 6 171
ro (fm) S, (MeV)
60 . . . . . 23.5— . . . .
>0r 1 23.0f 1
o 40t {1 2
£ E 2250 ]
& 30} 1 &
Sl / | 22.0} 1
10 L L L L L 215 L L L L L
0.5 0.6 0.7 0.8 0.9 4 5 6 7 8
a, (Mev) Vso (MeV)

Kathrin Wimmer RIBF Discussion 35



G Lt sl |Momentum distributions

0.07
o % and
P 0.06

transversal % momentum distributions

m calculation of parallel 4

m using same input =
S-matrices and wave functions 3;
©

m eikonal approximation 0.02
— symmetric distributions

—-400  -200 0 200 300
Ap;, (MeV/c)

0.07

— total

0.06}- 1d;,

0.051

5 0.04]
©
2
o 0.03
©

0.02}

0.011

0.00 .
—-400  -200 0 200 400

Ap, (MeV/c)
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G Lt sl |Momentum distributions

0.07

m calculation of parallel 376 and "
) I 0061 __ ., 1d3,
do. istributi B
transversal dp, Momentum distributions 005l — m=1
. . =2

m using same input & oo m

S-matrices and wave functions 3 003
5o

m eikonal approximation 0.02
— symmetric distributions 001

m calculations for different m states: 0.00 ‘ ‘

_ Id . t ' —-400 —200 0 200 400
m = [ aominan Apy; (MeV/c)

m m =/ nucleon orbit will be perpendicular to 0.07—— , , ,
the z-axis (beam direction): o0sl| — total 1d,,
— high probability to hit the target, with the oosl| — " :)
core further away surviving the collision = m=

o 0.04-

m m = 0 nucleon orbit aligned with beam 2 005

. . 1<} N r

direction: ©
— if nucleon hits target, core will be 002
absorbed as well 0.01}
0.00

—-400  -200 0 200 400
Ap, (MeV/c)
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G Lt sl |Momentum distributions

m Coulomb deflection and diffractive scattering affect the transverse distribution
— measure parallel (longitudinal) momentum distributions

m width (and shape) of the parallel momentum distribution allows to make spin and
parity assignments

m common use of knockout reactions in combination with y-ray spectroscopy for
nuclear structure studies
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G Lt sl |Momentum distributions

m Coulomb deflection and diffractive scattering affect the transverse distribution
— measure parallel (longitudinal) momentum distributions

m width (and shape) of the parallel momentum distribution allows to make spin and

parity assignments
m common use of knockout reactions in combination with y-ray spectroscopy for
nuclear structure studies

example: neutron knockout from 24O on ®Be at 100 MeV/u

0.30— , . . . 0.07— , . . . .
total 2s — total 1d 2p
0'257 i 0060 — m=0 1 * 4
o0sf| — m=1 1
0.20} 1 — m=2
a S 0.04f i
B o.ast 12
o o 0.03F
kel o
0.10} 1
0.02|
0.05 1 o.01}
0.00 0.00 .
—400 —200 0 200 400 —400 -200 0 200 400 —400 —200 0 200 400
Ap| (MeVi/c) Ap), (MeVi/c) Ap, (MeV/c)
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G Lt sl |Momentum distributions

m Coulomb deflection and diffractive scattering affect the transverse distribution
— measure parallel (longitudinal) momentum distributions
m width (and shape) of the parallel momentum distribution allows to make spin and

parity assignments
m common use of knockout reactions in combination with y-ray spectroscopy for

nuclear structure studies

example: neutron knockout from 24O on ®Be at 100 MeV/u

0.30— - - - - 0.07 — - - - - -
total 2s — total 1d 2p
0'257 i 0060 — m=0 1 * 1
— m=1
0.05H i
0.20- g — m=2
a S 0.04f i
B o.ast 12
) o 0.03f
o el
0.10+ g
0.021
0.05 1 o.01}
0.00 .
000 =5 =300 0 200 400 —-400 -200 O 200 400 —400 -200 O 200 400
Ap| (MeVi/c) Ap), (MeVi/c) Ap, (MeV/c)

m for comparison with experiment:
— transformation into laboratory system and convolution with resolution
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particle structure

m one-nucleon knockout probability
P(b)= ISc(5)|2/|¢n//(F)|2(1 —[Su(b)P?) d7

m core survival probability |S;|?
m valence particle absorbed 1 — | S, |?
m folded with the wave function ¢,;(7'), 7 the core-valence distance

Kathrin Wimmer RIBF Discussion



m one-nucleon knockout probability

particle structure

P(b)= |sc(5)|2/|¢,,,,-(F)|2(1 —|Su(by)?) dF

m core survival probability |S;|?
m valence particle absorbed 1 — | S, |?

m folded with the wave function ¢,;(7'), 7 the core-valence distance

— s,
10 — 1P
—  $(1ds,)
, P(b)
10
IS
T
107
10"
s .
10 0 2 4 6 8 10 12
b (fm)

Kathrin Wimmer

example: 103, neutron knockout from 240
on °Be at 100 MeV/u

m sensitivity to the surface
m probing the valence space
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> REXE

m one-nucleon knockout probability

Sensitivity to single-particle structure

P(b)= |sc(5)|2/|¢,,,,-(F)|2(1 —|Su(by)?) dF

m core survival probability |S;|?

m valence particle absorbed 1 — | S, |?

m folded with the wave function ¢,;(7'), 7 the core-valence distance

10° ;
— s,
10" — 1P
— $(1d;p)
P(b)
102

0 2 4 6 8 10 12

Kathrin Wimmer

example: 103, neutron knockout from 240
on °Be at 100 MeV/u

m sensitivity to the surface

m probing the valence space

m asymptotic normalization coefficients:
W_ 111/2(2kra)

R(ra) = Ci P
a

R(r,) radial wave function at
asymptotic distance rj,
W Whittaker function
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Some results and open questions

Kathrin Wimmer



L.t 5 4l The spectroscopic factor

Theoretical partial cross section for the removal of a nucleon
from a single-particle state j*

m populating state f in the residue nucleus
(excitation energy Ef, effective separation energy Sf = S+ E;)

N
O-th(f) = (AA;1) Czs(f7./n)63p(./7 S;()

N harmonic oscillator shell number for center of mass correction
C?S(f,j) shell model spectroscopic factor
inclusive cross section: sum over all bound states:

on= Y. on(f)

bound

many input parameters into ¢ for the reaction geometry

comparison to theory by cross section ratio

Rs = Oexp
Oth
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S Lt sal Asymmetry in binding energ

m in (e,e’p) experiments on stable target a reduction of the spectroscopic strength
of Rs ~ 0.65 was found.

m stable nuclei have a limited range of proton to neutron asymmetry AS = S, — S,

=0€X
o
D
R
5
o
i)
om— @
[N
<
Sal g
o ©
-
P
o
B
[¢]
i)
1

EU) 51
*%pp i
041 o (eep)aS=S S,
02 | | | | L
-30 -20 -10 0 10 20
AS (MeV)

J. A. Tostevin and A. Gade, Phys. Rev. C 90 (2014) 057602
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S Lt sal Asymmetry in binding energ

m in (e,e’p) experiments on stable target a reduction of the spectroscopic strength
of Rs ~ 0.65 was found.

m stable nuclei have a limited range of proton to neutron asymmetry AS = S, — S,
m radioactive nuclei at the drip-lines like 32Ar or 2°C have |AS| ~ 20

19 15, T
1.0 C 206 C QCE o _
L 0g; Ar i
L zaS fs‘ EB 9Li 4
<08 s ie & i
5 L 36, O
R R
Og 06 [ Be AOCaE E 120 L § Mg
TR E
el i CJ; ‘2 Caw “Ar §‘°
04 | (eep):AS=S S o S
p-n 22Mg S 28
I e n-removal: AS=S -S, sasi§ gazs 1
0.2-_ o p-removal: AS=S -S, 368 Ar
i [ [ [ [ Lo
-30 -20 -10 0 10 20

S (MeV)
J. A. Tostevin and A. Gade, Phys. Rev. C 90 (2014) 057602

m with few exceptions the data is from NSCL (80 — 100 MeV/u)

Kathrin Wimmer RIBF Discussion



e o=l Dependence on the beam energ

m claim: 100 MeV/u is too low for the eikonal approximation
m measurements of proton knockout from 8B from 76 to 1440 MeV/u

E (MeV/u) | Oexp (mMb) Rs
” 10 % I 76 130(11) | 0.86(7)
5 boo 8 . 142 109(1) | 0.86(1)
O
° 285 89(2) | 0.88(2)
Zos| e 936 94(9) | 0.89(9)
5 o (%B,Be) 1400 96(3) | 0.88(3)
I o (*0,0)
(@)
0.0 =
10 10

Beam Energy (MeV/nucleon)
J. Enders et al., Phys. Rev. C 67 (2003) 064301, B. Blank et al., Nucl. Phys. A 624 (1997) 242,
D. Cortina-Gil et al., Phys. Lett. B 529 (2002) 36, D. Cortina-Gil et al., Eur. Phys. J. A 10 (2001)49,
B. A. Brown et al., Phys. Rev. C 65 (2002) 061601
m consistent results over a large range of energies

m — need to cover a larger range of AS as well
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s tasxdll Quenching in transfer reactions

12— T T T T T

0 (e ¢'p) m reanalysis of transfer reactions with stable
LOF o p transfer 4 .

o :1 transfer ﬂUC|eI
08 4

wosf° m (d,p), (p,d), *He and & induced reactions
ol m all consistent with (e,e’p)
B. P. Kay et al., Phys. Rev. Lett. 111 (2013) 042502
02F 4
00 L L L L L n
-15 -10 -5 10 15
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s tasxdll Quenching in transfer reactions

12 T T T T T T
0 (e ¢'p) m reanalysis of transfer reactions with stable
LOF o p transfer 4 .
o :1 transfer ﬂUC|eI
08 4
e O 0rg O m (d,p), (p,d), 3He and o induced reactions
o5 © . .
b % m all consistent with (e,e’p)
B. P. Kay et al., Phys. Rev. Lett. 111 (2013) 042502
02F 4
00kt L L 4 L L L 1.25 T T T T
-15 -10 -5 5 10 15 ‘ 1
AS (\Io\ I 5 I
m (p,d) transfer reactions with Ar isotopes at 1.00f L l :
33 MeV/u S S
05l Ar\i S Ari | i
m no dependence on AS observed, but strong L T
. . o . | “"Ar
dependence on choice of optical model & sl -
J. Lee et al., Phys. Rev. Lett. 104 (2010) 112701 }T/ 1
0.285 O n-—transfer (CHB89) 37'
® n—transfer (JLM+HF) ®ar
¥ n—knockout 1
0.00 L2 ‘ ‘ ‘ ‘
—20 -10 0 10 20

AS(MeV)
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s tasxdll Quenching in transfer reactions

12— T T T T T T
0 (e ¢'p) m reanalysis of transfer reactions with stable
LOF o p transfer 4 .
o :1 transfer ﬂUC|eI
08 4
3 . .
<ol 7 o® m (d,p), (p,d), °He and « induced reactions
b % m all consistent with (e,e’p)
B. P. Kay et al., Phys. Rev. Lett. 111 (2013) 042502
02F 4
0.0t L L . L L L 1.25 7 T T T T
-15 -10 -5 0 5 10 15 ‘ i
AS (MeV) . . | o) i
m (p,d) transfer reactions with Ar isotopes at 1.00f g | h
33 MeV/u S S
075k Ar\i Ari [ i
m no dependence on AS observed, but strong L T
. . o . L Ar
dependence on choice of optical model & sl -
J. Lee et al., Phys. Rev. Lett. 104 (2010) 112701 }T/ i
LI I R I 0.285 O n-—transfer (CHB89) 57'
= L " “Ogata | ® n—transfer (JLM+HF) ®ar
? mO(d‘ 3He) o ®0 data ¥ n—knockout i
E i o ] 0.00 L2 ‘ ‘ ‘ ‘
> H O data —20 ~10 0 10 20
S osl é] B [ 5 - AS(MeV)
n
o 04f “owv4  m similar observations for d('#O,t,3He)
02 -zlo -1|0 (IJ 1|0 2|0 at 18 MeV/u
AS=¢(S,-S,) (MeV) F. Flavigny et al., Phys. Rev. Lett. 110 (2013) 122503
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> REXE

300

1°Be("*Be.’Be). 120 MeV/u s 37m m scanning the momentum distribution
B0 =T 0a8 mb L m precise measurements of absolute
200 K=119 7 Eikonal cross sections of light p-shell nuclei

m deviations from the eikonal theory

do/dp,, [mb/ 0.02 GeV/c]
2
|

100 -

50
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] "C(C,C), 120 MeV/u e 2203Tm

—_ ¢ 2274Tm
9 g0 =27.4(16) mb + 2344Tm
> 80 Fine (orm 4 2414Tm
) 1 =059 --- Eikonal
Q — Best Fit
60
e 4
35
E 40
=
2
5 20—
o

0

38 40 42 44 46
p, [GeVic] G. F. Grinyer et al., Phys. Rev. Lett. 106 (2011) 162502
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> REXE

("Be(0")’Be(3/2))

coM’cEry)

S

ht nuclei: test of ab-initio methods

T

NCSM
—— NCSM fit

= VMC
— VMC

fit

(=]

Kathrin Wimmer

scanning the momentum distribution

precise measurements of absolute
cross sections of light p-shell nuclei

m deviations from the eikonal theory

m p-shell nuclei can be calculated in

ab-initio methods

overlap function derived from
variational Monte-Carlo (VMC) and
no-core shell model (NCSM)

m systematic difference at large radii

— spectroscopic factors, densities
(S-matrices)

G. F. Grinyer et al., Phys. Rev. Lett. 106 (2011) 162502
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Systematic studies of light nuclei

m A = 10 results for neutron knockout:

projectile | Ogxp (Mb) | SM (mb) | NCSM (mb) | VMC (mb)
0Be 73(4) 96.6 86.9(16) | 72.8(13)
e 23.2(10) 48.0 43.4(9) 30.8(6)

m conventional shell model (Cohen-Kurath interaction):
over-predicts the cross section

m best agreement with VMC calculations & ¢ iinyer et al, Phys. Rev. Lett. 106 (2011) 162502
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Inclusive Cross Section (mb)

Systematic studies of light nuclei

m A = 10 results for neutron knockout:

projectile | Ogxp (Mb) | SM (mb) | NCSM (mb) | VMC (mb)
0Be 73(4) 96.6 86.9(16) | 72.8(13)
e 23.2(10) 48.0 43.4(9) 30.8(6)

m conventional shell model (Cohen-Kurath interaction):
over-predicts the cross section

m best agreement with VMC calculations

G. F. Grinyer et al., Phys. Rev. Lett. 106 (2011) 162502

100 Proton Knockout Neutron Knockout

a1

('LiHe) ‘c'p) (“Be,’Li) (Li,"Li) CLi,"Li) c’c) ("“Be.’Be)

systematic study for several nuclei

VMC agrees for removal of deeply bound nucleons
less good description for weakly bound

G. F. Grinyer et al., Phys. Rev. C 86 (2012) 024315
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@ .54l The role of the continuum

m experimentally: more bound — more reduction factor
m explore the role of the continuum and the effect on the removal strength for
weakly bound nucleons

m ab-initio coupled cluster theory for oxygen isotopes 4280

09 T T T T T
08

07
L
(2]

06F ©-0p,, (M HF-0SC
5-a Py, (M HF-OSC
o—ep,, (M HF-WS

051
=—u Py, (m) HF-WS

04 1I4 1|6 2|2 2|4 2|8
Oxygen isotope (A)
m spectroscopic factors calculated with continuum states included (HF-WS) show a
quenching towards the drip-line

@. Jensen et al., Phys. Rev. Lett 107 (2011) 032501
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@ .54l The role of the continuum

m experimentally: more bound — more reduction factor

m explore the role of the continuum and the effect on the removal strength for
weakly bound nucleons

m ab-initio coupled cluster theory for oxygen isotopes 4280

0<n T T T T T 1 b T T T T T
0_24Q
08F ] 09F % 3
(o] o 16.0 16.0
L]
07k o W O8f “ 3
o
7 2 )
06[ ©-0p;, (M HF-0SC ] 07 Cuy 3
5-a Py, (M HF-OSC o SF(mforAS=S, -, .

osf **Pi (M) HF-WS E 06F » SF(v)forAS=S§, - Sp E

Tt wea Py, (MHF-WS %0
ot M T U VI

’ 14 16 2 24 28 h ) . AS (MeV)

Oxygen isotope (A)

m spectroscopic factors calculated with continuum states included (HF-WS) show a
quenching towards the drip-line
m plotted as function of AS shows same trend as experimental data, but different
magnitude
m data required for the neutron-rich oxygen isotopes
@. Jensen et al., Phys. Rev. Lett 107 (2011) 032501
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e 2% Two-nucleon knockout

Two-proton knockout reactions from neutron-rich nuclei
B give access to even more exotic nuclei

m are direct reactions
28Mg 27Na 26Ne

_ D. Bazin et al., Phys. Rev. Lett. 91 (2003) 012501
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e 2% Two-nucleon knockout

800
Two-proton knockout reactions from neutron-rich nuclei Eexc=1319 keV Exg? -
600 1T
B give access to even more exotic nuclei Y H
. . S 400
m are direct reactions 8
ZBMg 27Na ZGNe 200
0
Exp ——
400 | Eexc=2268 keV 0 —
o 300
s
8 200
100
0
Exp ——
125 | Egy=2447 keV 0 —
¥ D. Bazin et al., Phys. Rev. Lett. 91 (2003) 012501 100
. £ 75
m can be used to determine angular momenta g o
E. C. Simpson et al., Phys. Rev. Lett. 102 (2009) 132502
0

-06 -04 -02 0 02 04 06
Parallel momentum [GeV/c]

D. Santiago-Gonzalez et al.,
Phys. Rev. C 83 (2011) 061305(R)
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e 2% Two-nucleon knockout

800

Two-proton knockout reactions from neutron-rich nuclei Eexc=1319 keV Exg? I
600 1T
B give access to even more exotic nuclei Y 4
. . S 400
m are direct reactions 8
28Mg 27Na ZGNe 200
0
Exp —
400 | Eexc=2268 keV 0 —
2 300
-
8 200
100
0
Exp ——
125 | Eqoyo=2447 keV 0 ——
_,"'l_ D. Bazin et al., Phys. Rev. Lett. 91 (2003) 012501 100
. g 75
m can be used to determine angular momenta g .
E. C. Simpson et al., Phys. Rev. Lett. 102 (2009) 132502
m however, more complicated reaction mechanism 0
separation of structure (C2S) and reaction (0gp) 06 04 02 0 02 04 06
p sp Parallel momentum [GeV/c]
does not hold anymore D. Santiago-Gonzalez et al.,

Phys. Rev. C 83 (2011) 061305(R)
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LesSl Two-nucleon knockout cross section

m two-nucleon overlap functions:
remove two nucleons from orbitals (nlf)1 > coupled to /, i

Wi, = (Sum (AW (A 1,2)) = Y Ca™ (M| i) {4’/1(1)@%(2)} "
luo

with oc = nylyjinabjo, @5 single-particle wave functions
— ¢’ signed two-nucleon amplitudes (equivalent of spectroscopic factors)
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Two-nucleon knockout cross section

m two-nucleon overlap functions:
remove two nucleons from orbitals (nlf)1 > coupled to /, i

f J,JI N o Y
V= @am(AVam(A1.2)) = T Gl sl am) |0,(1)€ 6,2,
luo
with oc = nylyjinabjo, @5 single-particle wave functions
— ¢’ signed two-nucleon amplitudes (equivalent of spectroscopic factors)
m stripping cross section to final state f:

f 1 f
olfse = [18 573 X (W |1 = 1S12)(1 = [23)] W, ) 2mbap
M;

under the assumption that the S-matrix is diagonal with respect to the different

states S — S;
J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604

m reminder for one-nucleon knockout:

cstr_/ o |1Sc(be) P (1= |Su(bv)[?)| 90) 2mbdb
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e o=l FElastic breakup in two-nucleon knockout

m one nucleon is removed in an elastic collision (| Sy|?), the other one absorbed
(1—S2[?) and vice versa:

(N _ (N1 (1,2
Gdiff—str - Gdiff—str + Gdiff-str

J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604
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LesSll FElastic breakup in two-nucleon knockout

m one nucleon is removed in an elastic collision (| Sy|?), the other one absorbed
(1—S2[?) and vice versa:

(N _ (N1 (1,2
Gdlff str — Gdlff str + Gdiff-str

m with the stripping-diffraction cross section to final state f:
(f),1 2 2 ( )
O-dlffstr /| C‘ 2J—|—1 < J,M,||S1 |82| )} JM> 2nb db

m reminder for one-nucleon knockout:

G = [ ((90]1e(b6)Su(B0) | o) — [{G0]Ss(5)S4(50) 60) ) 2 dby

J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604
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e o=l FElastic breakup in two-nucleon knockout

m one nucleon is removed in an elastic collision (| Sy|?), the other one absorbed
(1—S2[?) and vice versa:

(N _ (N1 (1,2
Gdiff—str - Gdiff—str + Gdiff-str

m with the stripping-diffraction cross section to final state f:

),1 1 f f
Géif?—étr = /|SC‘22J,_|_1 Z<w.(/;;l/li ||S1 |2(1 - |S2|2)} W(J,-B\/h-> 2mb db
1 MI

m reminder for one-nucleon knockout:

G = [ ((90]1e(b6)Su(B0) | o) — [{G0]Ss(5)S4(50) 60) ) 2 dby

m for the case of two-nucleon diffraction, estimate:

2
Odiff-str,i
Odiff-diff = * Ostr-str

Ostr-str

m three contributions to the cross section

O = Ostr-str 1+ Ostr-diff + Odiff-diff

J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604
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m test the reaction theory by measuring exclusive cross sections
m detection of the knocked out particles
— missing mass indicated the state of the target nucleus

o
3
IS
>

g 0.02F %0025% “j;h‘{..i{i' ,.}
%’0015; ié 0.02- //;?I\t
~$ I _‘éoms— P? ///
EE F “}*‘P g 0.01F //
g 0.005(- | X%% % 0.005— ‘ | 1\\‘{ &K
Y [GeV/c] or o0 e AM:Z[Ge\(}/Z&]
m disentangle different contributlons
diff-diff diff-str str-str tot.
Oexp (Mb) | 0.11(3) | 0.44(23) | 0.87(23) | 1.43(5)
fraction (%) 8(2) 31(16) 61(16)
Oiheo - As(2N) (mb) 0.09 0.55 0.83 1.475
fractioniheo (%) 6.3 37.4 56.3

m good agreement for relative contributions of the reaction processes

Kathrin Wimmer

K. Wimmer et al., Phys. Rev. C 85 (2012) 051603(R)
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e L% Two-nucleon knockout as a tool

m these reactions are an excellent tool to populate the most exotic nuclei
m often employed at RIBF for 2 spectroscopy
m but they also give more information
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e L% Two-nucleon knockout as a tool

m these reactions are an excellent tool to populate the most exotic nuclei
m often employed at RIBF for 2 spectroscopy
m but they also give more information

1.5
m branching ratio to the ground state By + expariment :

. © correlated 2n
m 3°S: assuming [1ds »]® ground state: 0 uncorrelatéd 2n
there are 15 uncorrelated pairs

0(0" )/ Gina
5

m removal of a pair

— states with J corresponding to the '
coefficients of fractional parentage Q 05 % a
m By([1d5/0]°) =1/6 . .
m By([1d5/0]*) = 4/9 for 6Si ool ‘ ‘
34Ar SOS ZGSi

K. Yoneda et al., Phys. Rev. C 74 (2006) 021303(R)
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e L% Two-nucleon knockout as a tool

m these reactions are an excellent tool to populate the most exotic nuclei
m often employed at RIBF for 2 spectroscopy
m but they also give more information

15 T

m branching ratio to the ground state By pp—
30 . 6 © correlated 2n
m “°S: assuming [1ds,]° ground state: g 8 uncorrelated 2n
there are 15 uncorrelated pairs > 1ot ]
m removal of a pair % i
— states with J corresponding to the ' %
coefficients of fractional parentage @ o5 % o |
m By([1d5/0]°) =1/6 . .
Bo([1 4) = 4/9 for 26Si ‘ ‘ ‘
L O([ d5/2] ) /9 0 Si 00 34Ar 308 ZGSi
m full shell model calculation:
two-nucleon amplitudes K. Yoneda et al., Phys. Rev. C 74 (2006) 021303(R)

m good agreement with USD shell model calculations for all cases
m these reactions can be used to constrain theoretical (structure) calculations
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e L% Two-nucleon knockout as a tool

m for several cases the inclusive cross section has been measured
m in comparison with shell model calculations a reduction is observed:

O
Rs(2N) = ﬁ
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e L% Two-nucleon knockout as a tool

m for several cases the inclusive cross section has been measured
m in comparison with shell model calculations a reduction is observed:

O 0.7
Rs(2N) = =2 06 ]
Oth : + +
0.5 * + +
m Rs(2N) = 0.5 for all cases measured Z 0.4
m same origin as Rg for one-nucleon o g‘z’
knockout? 0'1
short-range correlations? .o
consequence of the reduced model space 28Mg 26Si 305 34Ar 54Ti(gs)

J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604
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e L% Two-nucleon knockout as a tool

m for several cases the inclusive cross section has been measured

m in comparison with shell model calculations a reduction is observed:

O 0.7
Rs(2N) = =2 0.6
Oih ‘ +
0.5 L] + +
m Rs(2N) = 0.5 for all cases measured Z 04+
- 0 0.3
m same origin as Rg for one-nucleon o
0.2 1
knockout? o1
short-range correlations? .o
consequence of the reduced model space 28Mg 26Si 305 34Ar 54Ti(gs)
J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604
@ experiment o
1 O uncorrelated . )
08 u correlated m with RS(ZN) included the shell model

o
o
.

reproduces also exclusive cross sections

m — test predictions for TNA throughout the
nuclear chart

o
S}
.

Cross section (mb)
o
H

o

D. Bazin et al., Phys. Rev. Lett. 91 (2003) 012501
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New developments and
future directions

Kathrin Wimmer



o .54l Deformed projectiles

m in the eikonal model the overlap is determined by the size of target and core
m orientation of projectile symmetry axis with respect to target matters
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o .54l Deformed projectiles

m in the eikonal model the overlap is determined by the size of target and core
m orientation of projectile symmetry axis with respect to target matters

. . A I ; ——
m first study in a simplified [ .| corercal weightod by |
absorptive disk model ol o702 Nilsson coefiicients
""""" NEEEAY :‘2\ ’ — 05=04
I Target g r
Iy 5 06 ]
Deformed - _é ‘‘‘‘‘ aak i 5 |
projectile b Vo
= = —
5 04
z
T o02F ]
L L 1 1 L

0 I
-300 -200 -100 200 300

0 100
k. (MeV/c)
m large, prolate deformation: knockout from prolate-like Nilsson states reduced
m oblate-like Nilsson states: cross sections increased
m momentum distributions remain characteristic of the orbital angular momentum of
the initial state
E. C. Simpson and J. A. Tostevin, Phys. Rev. C 86 (2012) 054603
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m knockout reaction produce significant alignment of states

PJ m/ZO’ - m/G

m example: 1ds, neutron knockout from 24O on ?Be at 100 MeV/u

0.07 - - - - - 2.0
— total ,JP(m) values
0.06ff — m=0 gj , 1l |
oosff — M1 b |
— m=2 0 i
& 0.04} l)072571.570.505152.57 1.0 4
° =
<
L | =
g 0.03 osl |
0.02} g
0.0t |
0.01F g
000 I L _0.: 1 1 1 1 L L L L
—-400 —-200 0 200 400 0O 20 40 60 80 100 120 140 160 180
Ap;; (MeV/c) 9 (deg)
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m knockout reaction produce significant alignment of states
PY(m) = 03/} O3 = O}n/ 0"
m

m example: 1ds, neutron knockout from 24O on ?Be at 100 MeV/u
m determine multipolarity by y-ray angular distribution
but: limited coverage and resolution

0.07 - - - - 2.0
— total ,JP(m) values . .
0.06{ — m=o os 1 5% .3
m= 04 | 1.5F 2 1
— m=1 o f S E2+M1,5=-1 _
0.05}1 02 | - -
— m=2 o1 f o -
50047 l)072571.570.505152.57 1.0+ \::—v—-r:: q
< - <
o 0.03 13 sk~ S~
© . 5+ 1+
0.02} 1 272
’ pure E2
0.0t |
0.01f ,
000 I L _0_: 1 1 1 1 L L L L
-400 -200 0 200 400 0 20 40 60 80 100 120 140 160 180
Ap;; (MeV/c) 9 (deg)
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m knockout reaction produce significant alignment of states

Pl(m) =05/} 0= 0p/c”

m example: 1ds, neutron knockout from 24O on ?Be at 100 MeV/u

m determine multipolarity by y-ray angular distribution
but: limited coverage and resolution

m gating on central part of momentum distribution (|Apy| < 50 MeV/c)
enhances P(m = 2) from 54 to 82 %

0.07 - - - - 2.0
— total ,.P(m) values . .
0.061 — m=o i ] 3 -3
0.6
— m=1 % L5 E2+M1,6=-1
.05 70 i
0.0

251505051525 | 1.0

& 0.04f —~
° *
=
| | =
g 0.03 05
0.02} ,
0.0
0.01}f ,
000 L L _0_: 1 1 1 1 L L L L
—400 —200 0 200 400 0 20 40 60 80 100 120 140 160 180
Ap;; (MeV/c) 9 (deg)
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o 2% Correlations in two-nucleon knockout

there are several way how the two nucleons can be knocked out:

three-body mode: Y
e—0
e
T o

correlated pair removal:

— @
s '/?.
— e

two-step process (excluded by separatlon energy):

.\»
‘\‘

K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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o 2% Correlations in two-nucleon knockout

there are several way how the two nucleons can be knocked out:
three-body mode:

> ® m Dalitz plots of pairs of
. 5 ‘ invariant masses
\ Jr
L4 B
correlated pair removal: H N "F*a%
‘ / ‘ i > ot
\ / Y 0.0 \(,)VE; 10
' E op
\ . —— data
5F —— three-body
—— two-body
two-step process (excluded by separatlon energy):

— fit

events

.\»
‘\‘

K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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o 2% Correlations in two-nucleon knockout

there are several way how the two nucleons can be knocked out:
three-body mode:

> ® m Dalitz plots of pairs of
. 5 ‘ invariant masses
T si]!
L4 B
correlated pair removal: H N **a%
/ ‘ k3 e
‘ i o—° E W, o
\ PY —— data

—— three-body
—— two-body
— fit

two-step process (excluded by separatlon energy):

.\»
‘\‘

m significant correlation of the two protons
m small relative momentum

m — surface localization and spacial proximity
K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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@ .54l Correlations
m two-nucleon joint position probabilities in the impact parameter plane:
P(s1,s2) integrated over z; » (z = beam axis), proton 1 s at the surface

m S = 0 enhances spacial correlation
all only S=0

sg (fm)
o
T

s’z‘ (fm) ’ ) s>2‘ (fm)

E. C. Simpson and J. A. Tostevin, priv. comm.

K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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@ .54l Correlations
m two-nucleon joint position probabilities in the impact parameter plane:
P(s1,s2) integrated over z; » (z = beam axis), proton 1 s at the surface

m S = 0 enhances spacial correlation
all only S=0

s’z‘ (fm) ’ ’ S; (fm)

E. C. Simpson and J. A. Tostevin, priv. comm.
64 % of the inclusive cross section S=0
56(12) % correlated proton pair fraction measured

K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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@ .54l Correlations

m two-nucleon joint position probabilities in the impact parameter plane:
P(s1,s2) integrated over z; » (z = beam axis), proton 1 s at the surface

m S = 0 enhances spacial correlation

all only S=0
o : y - m S =0 has a more narrow
momentum distribution
4L i
12; +-two-body
2+ - z . F
= 10— —three-bod
z S F - three-body is
< o0t 4 s o0
e s °F
2k - %ﬁ 6
I.I.IE r
4+ - S 4
No [
6 L I 1 1 1 1 | 1 1 1 ° 2
6 4 2 0 2 4 6 4 2 0 2 4 6 o . ) ) . .
s, (fm) sy (fm) 0™905" H06 "H07 08 08 A1 414 112

E. C. Simpson and J. A. Tostevin, priv. comm. PylGeviel

m 64 % of the inclusive cross section S=10
m 56(12) % correlated proton pair fraction measured

— a new probe of the spin correlations of valence nucleons
K. Wimmer et al., Phys. Rev. Lett 109 (2012) 202505
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@ 2.t 54l Nuclear targets versus (p,pN

quasi-free scattering experiments with radioactive beams
m probe valence and deeply bound states
m do not limit the sampling of the wave function to the surface
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@ L5l Nuclear targets versus

quasi-free scattering experiments with radioactive beams

m probe valence and deeply bound states
m do not limit the sampling of the wave function to the surface
m no significant difference for heavy projectiles
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T. Aumann et al., Phys. Rev. C 88 (2013) 064610
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@ L5l Nuclear targets versus

quasi-free scattering experiments with radioactive beams

m probe valence and deeply bound states
m do not limit the sampling of the wave function to the surface
m no significant difference for heavy projectiles
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T. Aumann et al., Phys. Rev. C 88 (2013) 064610
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i Jo &

m nucleon removal reactions are an excellent tool to study the
single-particle structure of nuclei

Direct reaction with exotic nuclei, P. G. Hansen and J. A. Tostevin, Ann. Rev. Nucl. Part. Sci. 53 (2003) 219
Reaction theory for exotic nuclei, J. A. Tostevin, Lecture notes 3rd Balkan school on nuclear physics (2003)
Direct reactions at relativistic energies, D. Cortina-Gil, Lecture notes Euroschool on exotic beams (2014)
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\’ THE UNIVERSITY OF TOKYO

m nucleon removal reactions are an excellent tool to study the
single-particle structure of nuclei

m with radioactive beams on light targets the give access to
the most exotic nuclei, neutron and proton-rich

Direct reaction with exotic nuclei, P. G. Hansen and J. A. Tostevin, Ann. Rev. Nucl. Part. Sci. 53 (2003) 219
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m nucleon removal reactions are an excellent tool to study the
single-particle structure of nuclei

m with radioactive beams on light targets the give access to
the most exotic nuclei, neutron and proton-rich

m at intermediate energies the eikonal and sudden approximations
give an excellent description of many experiments
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5 P
\’ THE UNIVERSITY OF TOKYO

m nucleon removal reactions are an excellent tool to study the
single-particle structure of nuclei

m with radioactive beams on light targets the give access to
the most exotic nuclei, neutron and proton-rich
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m reduction of spectroscopic strength and short-range correlations
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m nucleon removal reactions are an excellent tool to study the
single-particle structure of nuclei

m with radioactive beams on light targets the give access to
the most exotic nuclei, neutron and proton-rich

m at intermediate energies the eikonal and sudden approximations
give an excellent description of many experiments
m open questions remain:
m reduction of spectroscopic strength and short-range correlations
m deformation of the projectile
m two-nucleon knockout
m new approaches and techniques are developed at many places

for both theory and experiment
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Thank you for your attention
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