The supernova shock reaches to the stellar surface
somehow... with its kinetic E of 10°! erg ( =1 Bethe) !
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Then how do masswe stars blow up 2

Summary
v/ Assuming spherical symmetry,
the neutrino heating mechanism cannot explain explosions
of most massive stars.
v’ Many uncertainties: Go to multi-D (2D or 3D) ?, EOS/microphysics
may be incomplete (needs to be improved)? — Tomorrow
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Outline

v The Standard Supernova Theory

- What is missing in it ?

v Current Multi-D Supernova Paradigm
- status of radiation-hydrodynamics simulations

v Multi-messenger signatures
- Gravitational Waves and Neutrino Signals

v Summary with some perspectives




“q0 seconds’’ to overview Core-Collapse Supernova physics
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Both from theory and observation,
“Multi-D” effects are essential !




Why 1D stayed main-player (in the last 20 years?)
Tantalizing problems...
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Why 1D stayed main-player (in the last 20 years?)
Tantalizing problems...
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Why 1D stayed main-player (in the last 20 years?)

Tanftalizina nrohleme
Enerqy budget crisis in the neutrino mechanism

Typical observed explosion energy:

Fx ~1—2x10°erg

A - k
3 X 1053erg< 2 ) ol

1.4M,,) R
essentially carried away by neutrinos.

For the working of the neutrino mechanism,

v ~1% energy transfer via neutrinos to matter.
v EARSENME] 7D Boltzmann neutrino transport.

v Energy conservations should be kept < 1%,
over the entire simulation (for 2D, ~104° , 1 year/ one
simulation @ 10Tflops supercomputer.)

v’ Grand challenge in computational astrophysics !



Multi-messenger emission cites:

Rlue Giant (Red Giant: < 100)

Explosion multi-dimensionality
(origin of anisotropy)

Data Analysis ~
ya-
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Exp. Mechanism | GW emission
Dynamics Neutrino signals

Thermodynamics photon

@ v A final goal of SN modellers is.
“To identify the supernova mechanism from
CCSN multi-messengers
(GW/neutrino/EM observations) !
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Ncuuvull swal




Gravitational Waves (GWs) from Stellar Collapse ?

(see reviews in Ott (2009), Fryer & New (2011), Kotake (2013))
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v/SN in-our galaxy Is the target of GWs

More correctly,
H represents the degree of anisotropy.

If collapse proceeds spherically,
no GWs can be emitted.

What makes the SN-dynamics deviate from spherical symmetry is
essential for the GW emission mechanism !




After +50 years of CCSN modeling : “Multi-D” neutrino mechanism
(pioneered by Colgate & White (1966), see Janka (2012), Burrrows (2013) ,Kotake et al. (2012) for review)

«

our steps” in neutrino-driven explosions
see, e.g., Suwa et al. ) , , Ap
( S 1. 2010,2011,2013, Ap))

: After bounce, the bounce shock stalls.

: Neutrino-driven convection and the
(" tanding- ' ccretion- hock- nstability)

: In the heating region, dwell-time of
material gets longer due to non-radial
motions in multi-D environments.
(Turbulence helps explosion).

2@ain region:
_neutrino heating dominates
dver heutrino fooling

: At around O(100)s ms after bounce,
neutrino-driven explosions set in.

2D radiation-hydro simulation
of al5 M,_, star

sun

v IDSA scheme for spectral neutrino transport
v/ Lattimer-Swesty EOS (K=220 MeV)
:compatible with 2 M, NS observation
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2D-IDSA simulations for 101 progenitors with solar metallicity

Nakamura et al. (2014)




between progenitor and explodability connections ?
Nakamura et al. (2015)
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between progenitor and explodability connections ?
Nakamura et al. (2015)
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v Higher Compactness = Higher mass accretion to PNS = Heavier PNS =
Higher neutrino luminosity = “Diagnostic” Exp. energy and Nickel mass higher
(for the NS forming case) :
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2D landscape simulations for 378 progenitors (WHW(2)
Nakamura et al. (2015)
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Entropy [kg/baryon] at T
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17 M,
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explosion energy |10 erg]

1 Bethe

v The saturation timescales of explosion energy:
sensitive to the progenitor structures

- Need to perform long-term evolutions for > 378 models !
(Nakamura et al. in prep) Nakamura

v Must go to 3D ! e st.al MNRAS)

-~

/" Nearly saturated !
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Neutrino signals from ab-initio 3D models : 27 M., (2/2)

Tamborra et al. (2013), PRL
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v For a galactic source, we can learn much about SN
physics ! (Bounce time, explosion onset/offset time,
progenitor structure, SASI modulation timescales).
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vs. 2D

i t= 0009 ms

3 msec

A

1000
3D:384x128x256
(Mesh# N, N, Ng)

800

v For 11.2 Mg, 3D explosions are weaker than 2D.

600 ' (27 M, : Hanke et al. (2014), however, not for 9.6 M,
Melson et al. (2015))

= The “3D vs. 2D problem” is progenitor dependent.

200 = v No “Bethe” models obtained in 3D....

400

100 150 200 250 = Need to find ingredients to foster 3D explosions !
Time after bounce [ms] Candidates: Rotation, General Relativity, Microphysics
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Rotation, depending on the initial rotation rates, can foster

neutrino-driven explosions (see also, Nakamura et al. (2014), ApJ) |



Ultimate requirement of CCSN simulations

Disclaimer: only CCSNs

: 6D Boltzmann transport in full GR MHD hydrodynamics
with increasing microphysical inputs (quark-hadron physics) !
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General Relativity (GR) important: Aid the onset of an explosion

(Deeper potential well : core structures smaller = making both <E, > and L, higher)

(e.g., B. Mueller et al. (2013), Kuroda et al. (2012))
v 3D full GR code with multi-energy neutrino transport via the M1 scheme:

lly ©eneral Felativistic code with neutrino transport
Kuroda, Takiwaki, and KK, AplJS. (2016)
The marriage of BSSNOK formalism (3D GR code, Kuroda & Umeda (2010, AplS) )
+ M1 scheme; Shibata+2011, Thorne 1981, (see also, Just et al. (2015), O’Connor (2015) for recent work)
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1
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v Need next-generation (exa-scale) platforms !
(such as the upgrade of Tianhe (China),
Titan (Oak-Ridge) /Coral (Livermore), K (Riken))




v' Results from gray (energy-averaged) version of FUGRA

(e.g., Kuroda, KK, Takiwaki, 2012, ApJ, 2014, PRD)
Tpb(ms)=0.600086

15 M.,

(Hempel & Schaffner-Bielich (2010))

fits well with NS observation/Experiment)
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GW Spectrograms from 3D-GR model with VS.
Kuroda, KK, & Takiwaki (2016)
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v The quasi-periodic modulation of GW signals = the SASI timescales (~ 100 Hz).
v More clearer excess for softer EOS = Possible probe to nuclear EOS.

v For neutrino signals, Super-Kamiokande : back-ground free (nicer than ICECUBE), can detect
SASI-mod. signals for a Galactic event, Hyper-Kamiokande (2020) for an extragalactic event !




GW signal reconstruction by Coherent Network Analysis
gy s Py v .
359 | : 1 \’ Hayama, Kuroda, KK, & Takiwaki
v LIGOx2, VIGRO, KAGRA )= ¥. & PRD (2015)
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best sensitivity,
~ 100 Hz !
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v’ The, quasi-periodic, SASI-modulated GW in the best sensitivity range of interferometers.
v’ Coherent network analysis: these signals detectable out to the LMC (50 kpc).




“A” self-consistent 3D model

Gray-transport simulation

~350years old, ., °
Delaney et al. (2010)

Hydrodynamic model:
Mixing, RT, RM instabilities

Takiwaki, KK, Suwa (2014,2012 ApJ) :
7.5 e7 km .
Foran 11.2 M, star, ¢ '
’ Wongwathanarat et al. (2012) _
the stalled shock revived ! (m N day)
(4D with approximate transport) Wongwathanarat et al. (2014)

To-do-1: Long-term evolution in self-consistent 3D (GR) models
= confront CCSN theory with observation

To-do-2 : Full Boltzmann project :
= ultimately test whether the stalled shock would revive.
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Summary

Some are enough energetic to account for observations (Ee_xg, Ni).

2. 3D explosions generally under-energetic than 2D.
- progenitor dependence yet unclear.

v' Need to find some ingredients to foster 3D explosions. e
- some missing neutrino physics ? (e.g., Melson et al. (2015)) . \.
- Impacts of rotation (and magnetic fields) yet to be clarified A
in 3D self-consistent models.
(e.g., MRI, Obergaulinger+2009, Masada, Takiwaki, KK, 2015, Sawai+2014))

-

3. 3D GR modelling has just started with increasing microphysical inputs.
(e.g., FUGRA, it takes time ... next generation machines needed !)

4. Multi-messenger analysis of neutrino and GWs are in steady progress.
. = Important probe to the explosion physics for the SN20xx !

(for reviews, google on

“Thomas Janka, Adam Burrows, _

supernova review”




