The supernova shock reaches to the stellar surface somehow... with its kinetic E of 10^{51} erg ($\equiv 1$ Bethe)!

SN 1987A Progenitor: 20Msun

Then, how do massive stars blow up ?!

Summary

- ✓ Assuming spherical symmetry,
 - the neutrino heating mechanism cannot explain explosions
 - of most massive stars.
- ✓ Many uncertainties: Go to multi-D (2D or 3D) ?, EOS/microphysics may be incomplete (needs to be improved)? → Tomorrow

Outline

- ✓ The Standard Supernova Theory - What is missing in it?
- Current Multi-D Supernova Paradigm - status of radiation-hydrodynamics simulations 2nd ;Today
- ✓ Multi-messenger signatures
 - Gravitational Waves and Neutrino Signals
- Summary with some perspectives

"90 seconds" to overview Core-Collapse Supernova physics

Both from theory and observation, "Multi-D" effects are essential !

Why 1D stayed main-player (in the last 20 years?) Tantalizing problems... (lecture by N.Paar)

Why 1D stayed main-player (in the last 20 years?) Tantalizing problems... (lecture by N.Paar)

Critical Currue

Good(O) or bad(×) for

			Sophistications	explosion
Reaction			References	
VE±	=	VE±	Mezzacappa & Bruenn (1993a)	×
			Cernohorsky (1994)	
v A	⇒	v A	Horowitz (1997)	×
			Bruenn & Mezzacappa (1997)	
vN	⇒	vN	Burrows & Sawyer (1998)	\circ
v _e n	⇒	e ⁻ p	Burrows & Sawyer (1999)	
Ve P	≠	e ⁺ n	Burrows & Sawyer (1999)	
Ve A'	⇒	e ⁻ A	Bruenn (1985), Langanke et al. (2003)	×
			Mezzacappa & Bruenn (1993b)	(smaller Ye)
v v	⇒	e^ e^+	Bruenn (1985), Pons et al. (1998)	O
vv NN	⇒	NN	Hannestad & Raffelt (1998)	\circ
$v_{\mu,\tau}\overline{v}_{\mu,\tau}$	≠	$v_e \overline{v_e}$	Buras et al. (2003)	\cap
Vy Ve	⇒	$\nabla_{\mu\tau} \nabla_{\mu}$	Buras et al. (2003)	(larger Lv)

Multi-messenger emission cites:

Gravitational Waves (GWs) from Stellar Collapse

V amplitude from the quadrupole formula

Quadrupole moment

(see reviews in Ott (2009), Fryer & New (2011), Kotake (2013))

 $h\sim 10^{-20}$

Typical values at the formation of NS

$$R_s = 3 \operatorname{km}\left(\frac{M}{M_{\odot}}\right) \quad v/c = 0.1 \quad R = 10 \operatorname{kpc}$$

Sensitivity curve of LIGO

Abbot et al. (2013) PRD

SN in our galaxy is the target of GWs

More correctly,

$$h_{ij} = \epsilon \; \frac{R_s}{R} \left(\frac{v}{c}\right)^2$$

represents the degree of anisotropy.

If collapse proceeds spherically, $\epsilon = 0$ no GWs can be emitted.

What makes the SN-dynamics deviate from spherical symmetry is essential for the GW emission mechanism !

After +50 years of CCSN modeling : "Multi-D" neutrino mechanism

(pioneered by Colgate & White (1966), see Janka (2012), Burrrows (2013), Kotake et al. (2012) for review)

"Four steps" in neutrino-driven explosions (see, e.g., Suwa et al. 2010,2011,2013, ApJ)

1st : After bounce, the bounce shock stalls.

2nd: Neutrino-driven convection and the SASI. (Standing-Accretion-Shock-Instability)

3rd: In the heating region, dwell-time of material gets longer due to non-radial motions in multi-D environments. (Turbulence helps explosion).

4th: At around O(100)s ms after bounce, neutrino-driven explosions set in.

2D radiation-hydro simulation of a 15 M_{sun} star

✓ IDSA scheme for spectral neutrino transport
 ✓ Lattimer-Swesty EOS (K=220 MeV)
 :compatible with 2 M_{sun} NS observation

2D-IDSA simulations for 101 progenitors with solar metallicity

				T _{pb} = 0	ms	Nakamura et al. (20		al. (2014)
500km	200km 200km 8.10.8	۲ 2004 s11.0	шүоо <u>с</u> s11.2	۲ 2004 s11.4	۵۵۵ 2004 s11.6	۲ 2004 s11.8	۳ s12.0	s12.2
500km	۳ 2004 s12.4	۳ 2005 12.6	۳ ۵۵۵۶ s12.8	۲ 2004 s13.0	للإلى 13.2 s	۳ ۵۵۵۶ ۳3.4	۳ 2004 s13.6	s13.8
500km	۳ 2004 s14.0	۳ ۵2s14.2	۳۵۵۵ s14.4	۲۹۵0 2004 s14.6	للالم 14.8s	۳ 2005 s15.0	۳ s15.2	s15.4
500km	<mark>2004 س</mark> 15.6 s	۲ 2004 s15.8	۳ 2004 s16.0	۲ 2004 s17.0	۵00k 200k s18.0	ш <mark>ү</mark> 2004 19.0	۳ 2009 s20.0	s21.0
500km	۲ 2004 s22.0	۳ 23.0 s23.0	۳ ۶24.0	لالم 25.0s	للالم 26.0 \$26.0	۳ 2003 s27.0	۳ 2004 s28.0	s29.0
500km	200ku 200ku 9.00ca	۲ 2004 s31.0	s32.0	۲ 2009 s34.0	للا 2004 s36.0	ш 200к s38.0	۳ s40.0 s40.0	s75.0
				45				
C		10		15		20		25

"Systematics" between progenitor and explodability connections ? Nakamura et al. (2015)

"Systematics" between progenitor and explodability connections ? Nakamura et al. (2015)

"Progenitor mass" is a "not" good diagnostics for explosion.

Key : "Compactness: M_{core} /R_{core}" (o'c

d

 \sim

at t_{fin}

M_{PNS} [M_o]

(O'Connor and Ott (2011))

✓ Higher Compactness ⇒ Higher mass accretion to PNS ⇒ Heavier PNS ⇒ Higher neutrino luminosity ⇒ "Diagnostic" Exp. energy and Nickel mass higher (for the NS forming case) : Core-Collapse Supernova is initial value problem !

2D landscape simulations for 378 progenitors (WHW02)

<u>Neutrino signals from ab-initio 3D models</u>: 27 M_{sun} (2/2)

3D vs. 2D

(e.g., Takiwaki,KK, Suwa (2012,2014), ApJ)

3 msec

 ✓ For 11.2 M_{sun}, 3D explosions are weaker than 2D. (27 M_{sun} : Hanke et al. (2014), however, not for 9.6 M_{sun} Melson et al. (2015))
 ⇒ The "3D vs. 2D problem" is progenitor dependent.
 ✓ No "Bethe" models obtained in 3D....

⇒ Need to find ingredients to foster 3D explosions ! Candidates: Rotation, General Relativity, Microphysics

Ultimate requirement of CCSN simulations

Disclaimer: only CCSNs

General Relativity (GR) important: Aid the onset of an explosion

(Deeper potential well : core structures smaller \Rightarrow making both <E_{ν} > and L_{ν} higher)

(e.g., B. Mueller et al. (2013), Kuroda et al. (2012))

✓ 3D full GR code with multi-energy neutrino transport via the M1 scheme:

"FUGRA" : Fully General Relativistic code with neutrino transport

Kuroda, Takiwaki, and KK, ApJS. (2016)

The marriage of BSSNOK formalism (3D GR code, Kuroda & Umeda (2010, ApJS)) + M1 scheme; Shibata+2011, Thorne 1981, (see also, Just et al. (2015), O'Connor (2015) for recent work)

$\partial x^{\mu} \partial p^{\mu} \partial p^{\mu}$	 ✓ 1000ms/(4 ms (gray FUGRA) per day @4096 processors) ~ 250 days (R_{shock} > R_{iron}) > 2500 days (R_{shock} > R_{star}); ✓ Need next-generation (exa-scale) platforms ! (such as the ungrade of Tianbe (China) 				
$G_{\mu\nu} = \kappa T_{\mu\nu}$ $p^{\mu} \frac{\partial f}{\partial t} + \dot{p}^{\mu} \frac{\partial f}{\partial t} = S[f, \rho, T]$					
$\nabla_{\mu} \left(\rho Y_e u^{\mu} \right) = Q_e$	Electron fraction	$(\partial_t - \beta^k \partial_k) \tilde{\Gamma}^i = 16\pi \tilde{\gamma}^{ij} \gamma_{i\mu} n_\nu T^{\mu\nu}_{(\text{total})} - 2lpha \left(\frac{2}{2} \tilde{\gamma}^{ij} K_{,i} - 6 \tilde{A}^{ij} \phi_{,i} - \tilde{\Gamma}^i_{i\nu} \tilde{A}^{jk} ight)$			
$\nabla_{\mu}T^{\mu}_{\nu} = 0 + \text{EOS Table}$	HD/MHD	$+ 4\pi \alpha \left(n_{\mu} n_{\nu} T^{\mu\nu}_{\text{(total)}} + \gamma^{ij} \gamma_{i\mu} \gamma_{j\nu} T^{\mu\nu}_{\text{(total)}} \right) (14)$	4)		
$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$	Continuity	$(\partial_t - \mathcal{L}_{\beta})K = -\Delta\alpha + \alpha(\tilde{A}_{ij}\tilde{A}^{ij} + K^2/3)$			
Solve the following equations:		$(\partial_t - \mathcal{L}_{\beta})\tilde{A}_{ij} = e^{-4\phi} \left[\alpha (R_{ij} - 8\pi \gamma_{i\mu} \gamma_{j\nu} T^{\mu\nu}_{(\text{total})} - D_i D_j \alpha \right]^{\text{trf}} + \alpha (K\tilde{A}_{ii} - 2\tilde{A}_{ik} \tilde{\gamma}^{kl} \tilde{A}_{il}) $ (1)	3)		
Complete set of GR-hydrodynamics	$(\partial_t - \mathcal{L}_\beta)\phi = -\frac{1}{6}\alpha K \tag{1}$	2)			
		$(\partial_t - \mathcal{L}_\beta)\tilde{\gamma}_{ij} = -2\alpha A_{ij} \tag{1}$	1)		

Titan (Oak-Ridge) /Coral (Livermore), K (Riken))

GW Spectrograms from 3D-GR model with strong SASI vs. weak SASI activity

Kuroda, KK, & Takiwaki (2016)

SFHx EOS

SHEN EOS

✓ The quasi-periodic modulation of GW signals ⇒ the SASI timescales (~ 100 Hz).
 ✓ More clearer excess for softer EOS ⇒ Possible probe to nuclear EOS.
 ✓ For neutrino signals, Super-Kamiokande : back-ground free (nicer than ICECUBE), can detect SASI-mod. signals for a Galactic event, Hyper-Kamiokande (2020) for an extragalactic event !

GW signal reconstruction by Coherent Network Analysis

✓ LIGOx2, VIGRO, KAGRA

Hayama, Kuroda, KK, & Takiwaki PRD (2015)

Sensitivity curves and model predictions

The reconstructed GW spectrogram

The, quasi-periodic, SASI-modulated GW in the best sensitivity range of interferometers.
 Coherent network analysis: these signals detectable out to the LMC (50 kpc).

Perspectives: Where are we and where are we going?

"A" self-consistent 3D model

Takiwaki, KK, Suwa (2014,2012 ApJ)

For an 11.2 M_{sun} star, the stalled shock revived ! (4D with approximate transport)

<u>Gray-transport simulation</u> Nucleosynthesis

> 9000 km $(\sim 2,3 \text{ S pb})^{y}$ Wongwathanarat et al. (2012)

~ 350 years old

DeLaney et al. (2010)

Hydrodynamic model: Mixing, RT, RM instabilities

7.5 e7 km (min – day)

Wongwathanarat et al. (2014)

To-do-1: Long-term evolution in self-consistent 3D (GR) models ⇒ <u>confront CCSN theory with observation</u>

To-do-2 : Full Boltzmann project :

⇒ ultimately test whether the stalled shock would revive.

Summary

- 1. In 2D, <u>a number of explosion models (> 400)</u> obtained by independent groups. Some are enough energetic to account for observations (E_{exp}, Ni).
- 2. 3D explosions generally under-energetic than 2D.
 progenitor dependence yet unclear.
 - ✓ Need to find some ingredients to foster 3D explosions.
 - some missing neutrino physics ? (e.g., Melson et al. (2015))
 - Impacts of rotation (and magnetic fields) yet to be clarified in 3D self-consistent models.

- 3. 3D GR modelling has just started with increasing microphysical inputs. (e.g., FUGRA, it takes time ... next generation machines needed !)
- 4. Multi-messenger analysis of neutrino and GWs are in steady progress.
 : ⇒ important probe to the explosion physics for the SN20xx !

(for reviews, google on "Thomas Janka, Adam Burrows, supernova review"

Many thanks!

The glass is half full !

(empty?)