Nuclear Density Functional Theory for Astrophysics

PART I – Nuclear properties and excitations

N. Paar

Department of Physics, Faculty of Science, University of Zagreb, Croatia

THE CHART OF THE NUCLIDES

How are the elements in the universe produced?

Big-bang nucleosynthesis

Hydrostatic nucleosynthesis in stars

- Hydrogen burning continues until the fuel is spent, leading to contraction of the star and higher temperatures.
- Burning cycles with different fuel continue (depending on mass of the star) all the way to iron!

Iron and nickel have two most stable isotopes – combining them into even heavier nuclei would consume more energy than it would provide.

Nucleosynthesis of elements heavier than Fe:

• Neutron capture and successive β-decay

NUCLEAR THEORY

- The goal: understanding the properties of nuclei for the synthesis of elements and properties of stars
- Nuclear theory approaches (microscopic)
 - Ab initio models
 - Interacting shell model
 - energy density functionals
 - ...
- Method of choice: Density functional theory allows a consistent approach to nuclear matter, finite nuclei and nuclear processes along the nuclide map

 Mainly based on mean field models (Skyrme, Gogny, relativistic)

DENSITY FUNCTIONAL THEORY

DENSITY FUNCTIONAL THEORY (DFT)

From: nobelprize.org

- **Walter Kohn** The Nobel Prize in Chemistry 1998 ٠ \diamond "for his development of the density-functional theory"
- Kohn, Hohenberg, Sham, ... •
- Successful applications of DFT in chemistry and condensed-matter physics
- Within the DFT it is not necessary to account for every electron's movement. ٠ Instead, one could look at the average density of electrons in the space.
- DFT shifts the emphasis from the individual wave functions to the density

- Hohenberg-Kohn theorem the exact energy of a quantum many body system is a functional $E(\rho)$ of the local density $\rho(\vec{r})$
- Ground state density and other ground state observables are obtained by minimizing a suitable energy functional $E(\rho)$

The strategy in the nuclear EDF approach:

- Establish an optimal EDF based on some effective nuclear interaction
- the nuclear energy functional is so far phenomenological and not connected to realistic NN-interaction
- Constrain the empirical parameters of the functional and its validation using available many body observables such as masses, radii, pseudo-data, etc.
- Complicated many body effects are encoded in the empirical constants
- EDF valid through the entire chart of nuclides, light and heavy, spherical and deformed
- Develop theory frameworks for applications of the functional to address various static and dynamic nuclear phenomena, processes, nuclear equation of state, neutron stars,
 ...

ENERGY DENSITY FUNCTIONAL (EDF)

SELF-CONSISTENT RELATIVISTIC MEAN FIELD MODEL

- The implementation of density functional theory in the relativistic framework in terms of self-consistent relativistic mean-field model
- The basis is an effective Lagrangian with relativistic symmetries

System of Dirac nucleons coupled by the exchange meson and the photon fields

Extensions:

• pairing correlations (Relativistic Hartree-Bogoliubov model)

$$\mathcal{L} = \mathcal{L}_N + \mathcal{L}_m + \mathcal{L}_{int}$$

- the Lagrangian of the free nucleon: $\mathcal{L}_N = \bar{\psi} (i \gamma^\mu \partial_\mu m) \psi$
- the Lagrangian of the free meson fields and the electromagnetic field:

$$\mathcal{L}_{m} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}_{\mu} \vec{\rho}^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

• minimal set of interaction terms:

$$\mathcal{L}_{int} = -\bar{\psi}\Gamma_{\sigma}\sigma\psi - \bar{\psi}\Gamma^{\mu}_{\omega}\omega_{\mu}\psi - \bar{\psi}\vec{\Gamma}^{\mu}_{\rho}\vec{\rho}_{\mu}\psi - \bar{\psi}\Gamma^{\mu}_{e}A_{\mu}\psi.$$

• with the vertices: $\Gamma_{\sigma} = g_{\sigma}, \quad \Gamma^{\mu}_{\omega} = g_{\omega}\gamma^{\mu}, \quad \vec{\Gamma}^{\mu}_{\rho} = g_{\rho}\vec{\tau}\gamma^{\mu}, \quad \Gamma^{m}_{e} = e\frac{1-\tau_{3}}{2}\gamma^{\mu}$

$$\partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} q_k)} - \frac{\partial L}{\partial q_k} = 0.$$

- Dirac equation (nucleons)
- Klein-Gordon eqs. (meson fields)
 - Self-consistent solution

SELF-CONSISTENT RELATIVISTIC MEAN FIELD MODEL

- Effective density dependence of the model motivated by ab-initio calculations
- Density dependent meson-nucleon couplings

Effective interactions with mediumdependent couplings:

COUPLING PARAMETERS: gσ(ρ), gω(ρ), g_ρ(ρ)

- Relativistic point coupling model
- The basis is an effective Lagrangian with four-fermion (contact) interaction terms; isoscalar-scalar, isoscalar-vector, isovector-vector, derivative term

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_S(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_V(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_S(\partial_\nu\bar{\psi}\psi)(\partial^\nu\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_3)}{2}\psi$$

- many-body correlations encoded in density-dependent coupling functions that are motivated by microscopic calculations but parameterized in a phenomenological way
- Extensions: pairing correlations in finite nuclei
 - Relativistic Hartree-Bogoliubov model
 - (e.g. with separable form of the pairing interaction Y. Tian, Z. Y. Ma, P. Ring, PLB 676, 44 (2009).)

SELF-CONSISTENT RELATIVISTIC MEAN FIELD MODEL

 Density dependence of the couplings - To establish the density dependence of the couplings one could start from a microscopic equation of state of symmetric and asymmetric nuclear matter.

$$\alpha_i(\rho) = a_i + (b_i + c_i x)e^{-d_i x} \qquad (i \equiv S, V, TV)$$
$$x = \rho/\rho_{sat}$$

• 12 model parameters:

$$egin{aligned} & a_s, b_s, c_s, d_s \ & a_v, b_v, d_v \ & b_{TV}, d_{TV} \ & \delta_s \ & g_n, g_p \end{aligned}$$

- isoscalar-scalar
- isoscalar-vector
- isovector-vector
- derivative term
- pairing correlations (strength parameters)

CONSTRAINING THE FUNCTIONAL

- The model parameters $\mathbf{p} = (p_1, ..., p_n)$ are constrained directly by many-body observables using χ^2 minimization

$$\chi^{2}(\boldsymbol{p}) = \sum_{i=1}^{m} \left(\frac{\mathcal{O}_{i}^{\text{theo.}}(\boldsymbol{p}) - \mathcal{O}_{i}^{\text{ref.}}}{\Delta \mathcal{O}_{i}^{\text{ref.}}} \right)^{2}$$

• Calculated values can be compared to experimental, observational, and pseudo-data

properties of finite nuclei – binding energies, charge radii, diffraction radii, surface thicknesses, pairing gaps, etc.,...

 nuclear matter properties – equation of state, binding energy and density at the saturation, symmetry energy J & L, incompressibility...

 Isovector channel of the EDF is weakly constrained by exp. data such as binding energies and charge radii. Possible observables for the isovector properties: *neutron radii, neutron skins, dipole polarizability, pygmy dipole strength, neutron star radii*

NUCLEAR MATTER EQUATION OF STATE AND SYMMETRY ENERGY

Nuclear matter equation of state:

$$E(\rho, x) = E_{SNM}(\rho) + E_{sym}(\rho)(1 - 2x)^2 + \dots$$

$$\rho = \rho_n + \rho_p \ , x = \rho_p / \rho$$

Symmetry energy term:

$$E_{sym}(\rho) \equiv S_2(\rho) = J - L\epsilon + \dots$$

$$\epsilon = (\rho_0 - \rho) / (3\rho_0)$$

$$L = 3\rho_0 \frac{dS_2(\rho)}{dr}|_{\rho_0}$$

J – symmetry energy at saturation density L – slope of the symmetry energy (related to the pressure of neutron matter)

COVARIANCE ANALYSIS IN THE FRAMEWORK OF EDFs

• The quality of X² minimization is an indicator of the statistical uncertainty

• Assume that χ^2 is a well behaved hyper-function of the parameters around their optimal value $\mathbf{p}_0, \partial_{\mathbf{p}}\chi^2(\mathbf{p}) \mid_{\mathbf{p}=\mathbf{p}_0} = 0$

- Near the minimum, $\chi^2\,$ can be approximated by a Taylor expansion as an hyper-parabola in the parameter space

$$\chi^2(\boldsymbol{p}) - \chi^2(\boldsymbol{p}_0) \approx \frac{1}{2} \sum_{i,j}^n (p_i - p_{0i}) \partial_{p_i} \partial_{p_j} \chi^2(p_j - p_{0j})$$

Curvature matrix:

Covariance between two quantities A and B:

$$\mathcal{M}_{ij} = \frac{1}{2} \partial_{p_i} \partial_{p_j} \chi^2 |_{\mathbf{p}_0} \qquad \overline{\Delta A \, \Delta B} = \sum_{ij} \partial_{p_i} A(\hat{\mathcal{M}}^{-1})_{ij} \partial_{p_j} B$$

• Variance $\overline{\Delta^2 A}$ and $\overline{\Delta^2 B}$ define statistical uncertainties of each quantity.

Pearson product-moment correlation coefficient provides a measure of the correlation (linear dependence) between two variables A and B.

$$c_{AB} = \frac{|\overline{\Delta A \, \Delta B}|}{\sqrt{\overline{\Delta A^2} \, \overline{\Delta B^2}}}$$

CORRELATIONS: NUCLEAR MATTER vs. PROPERTIES OF NUCLEI

NEUTRON SKINS AND DENSITY DEPENDENCE OF THE SYMMETRY ENERGY

- In nuclei, neutron densities are equally important as charge densities, but more difficult to assess
- The thickness of the neutron skin $r_{np} = r_n r_p$ depends on the pressure of neutron matter $P_{PNM} \sim L$: the size of r_{np} increases with pressure as neutrons are pushed out against surface tension
- The same pressure supports a neutron star against gravity (models with thicker neutron skins - neutron stars with larger radii)
- The pressure of neutron matter P_{PNM} ~ L is poorly constrained

Large theoretical uncertainties in the energy per particle as a function of the density for pure neutron matter.

NEUTRON SKINS AND DENSITY DEPENDENCE OF THE SYMMETRY ENERGY

NEUTRON SKINS AND DENSITY DEPENDENCE OF THE SYMMETRY ENERGY

- An accurate measurement of the neutron radius / neutron skin thickness in ²⁰⁸Pb may have important implications for understanding the symmetry energy and the properties of neutron stars
- Abrahamyan et al. PRL 108, 112502 (2012) parity violating electron scattering

Lead Radius Experiment (PREx) @ JLab

 $R_n - R_p = 0.33^{+0.16}_{-0.18}$

From nuclear collective motion:

Various modes of excitation provide constraints on the neutron skin thickness, e.g.

- Pygmy dipole resonances: A. Carbone et al., PRC 81, 041301(R) (2010)
 A. Klimkiewitz et al., PRC 76, 051603(R) (2007)
- Dipole polarizability: A. Tamii et al., PRL 107, 062502 (2011)

D.M. Rossi et al., PRL 111, 242503 (2013)

- Anti-analog GDR: A. Krasznahorkay et al., PLB 720, 428 (2013)
- Quadrupole resonances: S.S. Henshaw, M.W. Ahmed, G. Feldman et al, PRL 107, 222501 (2011)

• ...

Other approaches: pion photoproduction Taubert et al. PRL 112, 242502 (2014), etc.

CONSTRAINING THE SYMMETRY ENERGY

Isovector dipole transition strength – calculations are based on the same set of energy density functionals which vary the symmetry energy properties

CONSTRAINING THE SYMMETRY ENERGY

- The same set of DD-ME interactions used in the analysis based of various giant resonances and pygmy strengths (consistent theory !)
- Excellent agreement, except for the AGDR new measurements are needed for the AGDR

THE NUCLEAR MATTER INCOMPRESIBILITY

- Nuclear matter incompressibility $K_{nm} = 9\rho_0^2 \frac{d^2}{d\rho^2} \frac{E}{A}|_{\rho=\rho_0}$
- It can be determined from the energies of compression mode in nuclei: Isoscalar Giant Monopole Resonance (ISGMR)

• ISGMR energies are extracted from inelastic scattering of α-particles

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$
 (for nuclei)

- Strategy to reach K_{nm} (nuclear matter) :
- 1) Build the energy density functional (EDF), each parameterization corresponds to a K_{nm}
- 2) Calculate ISGMR excitation energy using the same EDF (e.g., RPA)
- 3) The K_{nm} value associated with the EDF that best describes the experimental ISGMR energy is considered as the "correct" one.

THE NUCLEAR MATTER INCOMPRESIBILITY

Using inelastic α scattering the strength distributions of the isoscalar giant monopole resonances (ISGMR) have been measured in nuclei

e.g., D. Patel et al., Phys. Lett. B 726, 178 (2013)

Target	E_{ISGMR} (MeV)				$\Gamma_{ISGMR}(MeV)$	$\sqrt{m_1/m_{-1}} ({ m MeV})$		$E_{ISGMR}A^{1/3}$ (MeV)	
	This work	$\mathrm{RCNP}\text{-}\mathrm{U}^{\mathrm{a}}$	Texas $A\&M^b$	KVI ^c	This work	This work	Pairing+MEM ^d	This work	$\operatorname{Pairing+MEM^{d}}$
²⁰⁴ Pb	$13.8 {\pm} 0.1$	-	-	-	$3.3{\pm}0.2$	$13.7{\pm}0.1$	13.4	$81.2{\pm}0.6$	78.9
²⁰⁶ Pb	$13.8 {\pm} 0.1$	-	-	$14.0\ \pm 0.3$	$2.8{\pm}0.2$	$13.6{\pm}0.1$	13.4	$81.5{\pm}0.6$	79.1
208 Pb	$13.7{\pm}0.1$	$13.5{\pm}0.2$	$13.91{\pm}0.11$	$13.9{\pm}0.3$	$3.3{\pm}0.2$	$13.5{\pm}0.1$	14.0	$81.2{\pm}0.6$	82.9

NEUTRON STAR PROPERTIES

• Mass-radius relations of cold neutron stars for different EOS – observational constraints on the neutron star mass rule out many models for EOS.

CONSTRAINTS ON THE NUCLEAR EOS BEYOND SATURATION

- The knowledge on the nuclear matter equation of state (EOS) beyond the saturation density ρ_0 is limited
- Some constraints on the EOS are possible from heavy ion collisions
- The FOPI (GSI) detector data on elliptic flow in Au+Au collisions between 0.4 and 1.5A GeV were used to establish empirical constraints on the nuclear EOS

 A. Le Fèvre, Y. Leifels, W. Reisdorf, J. Aichelin, Ch. Hartnack, arXiv:1501.05246 (2015).

• FOPI-IQMD (transport code) provides limits to the symmetric nuclear matter EOS up to $2\rho_0$

NUCLEAR MASSES

• Description of experimental data on masses: DD-ME2, DD-PC1, DD-MEδ, NL3*

NUCLEAR MASSES

• Relative accuracies in description of the masses

NUCLEAR LANDSCAPE WITH RELATIVISTIC EDFs

Systematical model uncertainties – limitations of the model, deficient parametrizations, wrong assumptions, and missing physics due to our lack of knowledge.

 These uncertainties are difficult to estimate – systematic errors can be estimated e.g., by exploring the spread - difference between maximal and minimal values obtained for a set of EDFs: DD-ME2, DD-PC1, DD-MEδ, NL3*

$$\Delta E(Z,N) = |E_{max}(Z,N) - E_{min}(Z,N)|$$

NUCLEAR LANDSCAPE WITH RELATIVISTIC EDFs

 Limits of nuclear landscape – two-proton and two-neutron drip lines calculated with different relativistic EDFs: DD-ME2, DD-PC1, DD-MEδ, NL3*

SYSTEMATIC UNCERTAINTIES : NEUTRON SKIN THICKNESS

 Electric dipole polarizability α_D and neutron skin thickness (r_{skin}) for ²⁰⁸Pb using both nonrelativistic and relativistic EDFs:

By using only models consistent with measured α_D (48 EDFs \rightarrow 25 EDFs), systematic model uncertainty in r_{skin} is reduced.

Model averaged value:

 $r_{skin}(^{208}Pb) = (0.168 \pm 0.022) \text{ fm}$

J. Piekarewicz, et al., PRC 85, 041302 (R) (2012)

STATISTICAL UNCERTAINTIES IN THE NUCLEAR BINDING ENERGIES

 The evolution of statistical uncertainties of the nuclear binding energies within isotope chains (RNEDF1)

- The quality of X² minimization of the EDF parameters to exp. data is an indicator of the statistical uncertainty
- curvature matrix

$$\mathcal{M}_{ij} = \frac{1}{2} \partial_{p_i} \partial_{p_j} \chi^2 |_{\mathbf{p}_0}$$

 Constraint on the dipole polarizability / symmetry energy improves the isovector properties of the EDF Towards a universal relativistic nuclear energy density functional for astrophysical applications – RNEDF1 (N.P., M. Hempel et al. 2016)

The strategy to constrain the functional (relativistic point coupling model)

- Adjust the properties of 72 spherical nuclei to exp. data (binding energies (△=1 MeV), charge radii (0.02 fm), diffraction radii (0.05 fm), surface thickness (0.05 fm))
- Improve description of open-shell nuclei by adjusting the pairing strength parameters to empirical paring gaps (n,p) (0.14 MeV)
- constrain the symmetry energy $S_2(\rho_0)=J$ (2%) from exp. data on dipole polarizability (²⁰⁸Pb) A. Tamii et al., PRL 107, 062502 (2011) + update (2015).
- constrain the nuclear matter incompressibility K_{nm} (2%) from exp. data on ISGMR modes (²⁰⁸Pb); D. Patel et al., PLB 726, 178 (2013).

... the strategy to constrain the functional

- constrain the equation of state using the saturation point (ρ₀) and point at twice the saturation density (2ρ₀) from heavy ion collisions (FOPI-IQMD) (10%)
 A. Le Fevre et al., arXiv:1501.05246v1 (2015)
- constrain the maximal neutron star mass by solving the Tolman-Oppenheimer-Volkov (TOV) equations and using observational data (slightly larger value M_{max}=2.2M_☉(5%); J. Erler. et al., PRC 87, 044320 (2013).)
 J. Antoniadis, et al. Science 340, 448 (2013); P. B. Demorest et al., Nature 467, 1081 (2010)
- the fitting protocol is supplemented by the covariance analysis

 calculation of the curvature matrix, correlations, statistical uncertainties

RNEDF1: DEVIATIONS FROM THE EXP. DATA

RNEDF1: NUCLEAR MATTER PROPERTIES

RNEDF1: COMPRESSIBILITY, SYMMETRY ENERGY

MASSES: FROM FINITE NUCLEI TOWARD THE NEUTRON STAR

Nuclear binding energies (calc. – exp.) - Including deformation (axial symmetry) Neutron star mass-radius relationship

RNEDF1: ISOTOPE AND ISOTONE CHAINS

RNEDF1: NEUTRON SKIN THICKNESS IN ²⁰⁸Pb

 $(γ,π^0)$: C.M. Tarbert et al., PRL 112, 242502 (2014) PREX: S. Abrahamyan et al., PRL. 108, 112502 (2012) (p,p'): A. Tamii et al., PRL 107, 062502 (2011) (p,p) J. Zenihiro et al., PRC 82, 044611 (2010) Antipr. at.: B. Kłos et al., Phys. Rev. C 76, 014311 (2007). LAND (PDR): A. Klimkiewicz et al., PRC 76, 051603 (2007). SV-min: P.G. Reinhard et al. SLy5-min: X. Roca-Maza, G. Colò et al. FSUGold: J. Piekarewicz et al. DDME-min1: N.P. et al.