Study of the Properties of Atomic Nuclei with RI Beam

Maya Takechi, Niigata University

Atomic Nuclei

Stable Nuclei ~300, Unstable Nuclei ~8000 Experimentally confirmed Unstable Nuclei ~ 3000

Nuclear Property : Size, Density

Known Properties from the Study of Stable Nuclei Radius Alpha particle scattering on Stable Nuclei Nuclear Radii ~ 1~10 fm

Electron Scattering

Nuclear radii follow the function of mass number

 $R \propto r_0^* A^{1/3}$

Saturation Density $m \rho_0 \approx 2.8 \times 10^{14} \text{ g} \cdot \text{cm}^{-3}$

R.M.

Rev. N

Nuclear Property : Mass, Binding Energy Ion source Known Properties from the Study of Stable Nuclei Mass Measurements by Mass spectrometer

Bainbridge Mass spectrograph (1930s)

 $M(A, Z) = Z^* m_p + N^* m_n - B(A, Z)$

Binding Energy / nucleon ~8 MeV

Nuclear Structure : Magic Number

Figures are from the lecture note of Prof. K. Muto, Tokyo Institute of Technology

$\Delta E = M_{Expt} - B(A, Z)$

Nuclei are more strongly bound when the number of constituent nucleons are certain magic numbers

N or *Z* = 8, 20, 28, 50, 82, 128 Closed Shell What will we find for unstable nuclei far from the stability line?

Stable Nuclei ~300, Unstable Nuclei ~8000 Many unseen nuclides

What will we find for unstable nuclei far from the stability line?

Stable Nuclei ~300, Unstable Nuclei ~8000 Many unseen nuclides

126 Stable Nuclei ■ Half Life > 30 days ■ 10ms < Half Life < 30 days □ Half Life < 10 ms Not Experimentally Observed Loosely-bound, Drip Line Nuclei Weak Binding Energy How is the structure ?

How can we study Unstable Nuclei? Magic Number ?

Experimental Approach to Unstable Nuclei

Accellerator

What is the accelerator?

The machine which give certain kinetic energy to charged particles by accelerating and controlling them with the use of electro magnetic field.

Unit of Energy

eV: Amount of energy gained by the charge of a single electron $(1.6*10^{-19})$ accelerated by an electric potential difference of 1V.

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

- Electrostatic Accellerator
- Linear Accellerator

Circular Accellerator

Van de Graaff

Circular Accellerator

r =

http://atomic.lindahall.org/

Cyclotron Facilities

NSCL: K500, K1200 (USA)

GANIL: CSSI, CSS2

RIKEN, RIBF RRC, FRC, IRC, SRC

地下 2 階

地下1階

http://www.riken.jp/

1

http://www.riken.jp/

• GSI, SIS

• GSI, SIS and then SIS100, SIS300

Experimental Approach to Unstable Nuclei

Production of Unstable Nuclei as Radioactive Isotope (RI) Beam

Production of Unstable Nuclei

- Fusion-evaporation
- Fission
- Transfer Reaction

Projectile Fragmentation

• Spallation \rightarrow ISOL

Fission Ablation

Recent Works for New Isotope Search

J. Kurcewicz et al., Phys. Lett. B 717 (2012) 371-375

GSI (2012) ²³⁸U 1GeV/u on Be Target fission abrasion

Isotope	σ (nb)	Isotope	σ (nb)	Isotope	σ (nb)	Isotope	σ (nb)
¹⁵⁷ Nd*	980(40)	¹⁶⁸ Gd	78(5)	¹⁷⁶ Er	68(5)	¹⁸⁸ Lu	0.010(3)
¹⁵⁸ Nd*	201(11)	¹⁶⁹ Gd	10.6(15)	¹⁷⁷ Er	18(2)	¹⁹⁰ Hf*	0.027(13)
¹⁵⁹ Nd	39(4)	¹⁷⁰ Gd	2.6(8)	¹⁷⁸ Er	5.5(9)	¹⁹³ Ta	0.017(5)
¹⁶⁰ Nd	9.5(22)	¹⁶⁹ Tb	751(28)	¹⁷⁸ Tm*	24(3)	¹⁹⁴ Ta	0.0037(19)
¹⁶¹ Nd	3.0(17)	¹⁷⁰ Tb	99(6)	¹⁷⁹ Tm	1.21(18)	¹⁹⁵ W*	0.049(1)
¹⁶⁰ Pm	518(36)	¹⁷¹ Tb	14(2)	¹⁸⁰ Tm	4.5(9)	¹⁹⁶ W	0.018(4)
¹⁶¹ Pm	161(9)	¹⁷² Tb	1.0(4)	¹⁸¹ Tm	0.6(3)	¹⁹⁷ W	0.0034(17)
¹⁶² Pm	25(3)	¹⁷¹ Dy	441(18)	¹⁸¹ Yb*	2.3(3)	¹⁹⁸ Re*	0.028(7)
¹⁶³ Pm	4.5(15)	¹⁷² Dy	121(7)	¹⁸² Yb*	0.45(10)	¹⁹⁹ Re	0.0076(27)
¹⁶³ Sm	134(11)	¹⁷³ Dy	18(2)	¹⁸³ Yb	0.21(5)	²⁰² Os	0.0044(20)
¹⁶⁴ Sm	42(4)	¹⁷⁴ Dy	1.9(6)	¹⁸⁴ Yb	0.028(9)	²⁰³ Os	0.0025(18)
¹⁶⁵ Sm	7.8(16)	¹⁷³ Ho	341(15)	¹⁸⁵ Yb	0.007(3)	²⁰⁵ Ir	0.003(2)
¹⁶⁷ Eu	7.1(12)	¹⁷⁴ Ho	98(6)	¹⁸⁵ Lu*	0.22(7)	²⁰⁶ Pt	0.033(11)
¹⁶⁸ Eu	2.0(8)	¹⁷⁵ Ho	22(2)	¹⁸⁶ Lu*	0.15(4)	²⁰⁷ Pt	0.008(3)
¹⁶⁷ Gd	625(23)	¹⁷⁶ Ho	2.2(6)	¹⁸⁷ Lu	0.043(9)	²⁰⁸ Pt	0.0027(15)

Recent Works for New Isotope Search

NSCL (2013) ⁸²Se 139 MeV/u on Be Target Projectile Fragmentation

O. B. Tarasov et al., Phys. Rev. C 87, 054612 (2013)

RI beams produced at BigRIPS (May 2007 – Dec. 2014)

From presentation file of Prof. T. Kubo, RIKEN

90

70

100

- We have produced a total of 354 RI beams and delivered to 87 experiments.
- \succ by using:
 - In-flight fission of ²³⁸U
 - Projectile fragmentation of ¹⁴N, ¹⁸O, ⁴⁸Ca, ⁷⁰Zn, ¹²⁴Xe
- Production yields for a thousand of RI beams
- A number of new isotopes and new isomers

Mass and Lifetime Measurements

Mass Measurements of unstable nuclei Lifetime of neutron-rich nuclei

Lifetime of bare nuclei • • • Re/Os clock

Mass Measurements with Experimental Storage Ring (ESR at GSI)

Mass Measurements with Strage Ring (ESR at GSI)

Lase anticollinea

Fast kicker

different charge states yields not only different charge states yields not only by advantageous for balibration. reservoir of cold

intensity fragments can be reduced to 0.01π mm mr. The cooling time scales

nverse square of the ionic charge and http://www.ikp.tu-darmstadt.de/

Lifetime Measurements with ESR

Lifetime obtained using ESR = Lifetime of "Bare Nucleus"

Lifetime Measurements with ESR

Lifetime Measurements of ¹⁸⁷Re

F. Bosch, Lect. Notes Phys. 651, 137 (2004)

Beam : 400 MeV/u full-strip ¹⁸⁷Re Primary Beam from SIS

 10^8 stored primary bare ¹⁸⁷Re ions, a few hundred ¹⁸⁷Os ions per hour were generated. From those numbers the impressively short half-life of 33 years for bare ¹⁸⁷Re has been determined.

Lifetime Measurements at RIBF EURICA Project

Lifetime Measurements at RIBF

tp://www.riken.ip

EURICA

(Euroball-RIKEN Cluster Array)

EURICA

ZDS

EURICA Project

PID tag : BigRIPS and ZDS

Beta-ray detection WAS3ABi

- DSSSD
- → Tag the daughter which emits beta, from position information
- Measurements of beet-emitted time
- → Lifetime

Gamma-ray from Isomer and Daughter Nuclei EURICA

- Isomer tag
- β delayed gamma

WAS3ABi (Wide range Active Silicon-Strip Stopper Arra

for Beta and ion detection)

Fig. 1. Side view of WAS3ABi with eight DSSSDs. Aluminum rods were disconnected at the central position for the installation of the $DSSSDs^{4)}$.

Lifetime Measurements at RIBF

Nuclear Radii Measurements

Nuclear Radii Measurements

Stable Nuclei :

Electron Scattering Experiment X-ray Measurements Muonic Atom

Unstable Nuclei : Isotope shift Measurements

Stable Nuclei or Unstable Nuclei Nuclear Reaction Elastic Scattering Cross Section Total Reaction Cross Section

With some model assumption

Charge Radii

Sensitive to the Coulomb Potential of Protons

Matter Radii Sensitive to the

Nucleons

 $\sigma_R \cdot \cdot \cdot$ Size of Nuclei

 $\sigma_{\rm I} \simeq \sigma_{\rm R}$ at high energies

Glauber Model
$$\sigma_{R} = \int db \left[1 - \exp\left(-\int d^{2}r \sum_{i,j} \sigma_{NN}(E) \rho_{z}^{P_{i}}(r) \rho_{z}^{T_{j}}(r-b)\right) \right]$$

 σ_{NN} Nucleon-Nucleon Total Cross Section ρ^{P} Projectile Nucleon Density Distribution ρ^{T} Target Nucleon Density Distribution

Nuclear Size and Skin formation

Neutron Skin

Experiment : Measurements of RIBF, RIKEN Primary Beam ⁴⁸Ca Secondary Beam ²⁰⁻³²Ne

Transmission Method

Neutron Skin Formation in Ne Isotopes

Near Future Experiment Neutron Skin Determination for Ni isotope at RIBF

~ EOS for asymmetric nuclear matter ~

Study of Nuclear Matter from Symmetric to Asymmetric

Symmetric nuclear matter

- Saturation density ~0.17 fm⁻³
- Energy per particle ~-16MeV
- Nearly incompressible

Asymmetric nuclear matter

From Radii, Mass, Collective Excitation data for stable nuclei

To describe the property of extreme matter

Neutron Star : Structure, Mass, Radius

Kazuhiro Oyamatsu and Kei Iida Phys. Rev. C 81, 054302 (2010)

Study of Nuclear Matter from Symmetric to Asymmetric

How to know L?

Information from atomic nuclei

Many theories indicate strong correlation between neutron skin thickness and L

Kazuhiro Oyamatsu and Kei Iida Phys. Rev. C 81, 054302 (2010)

One Simple correlation

M. Centelles et al., PRL 102, 122502 (2009)

EOS around N=Z $w(n, \delta) \approx w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \frac{\delta^2 \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]}{B_0}$ Droplet Model $E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - \frac{a_A \frac{(A - 2Z)^2}{A}}{A} - \delta(A, Z)$

> When the density of nuclear matter is around nuclear surface density Symmetry term $\mathbf{a}_{A} \simeq \text{symmetry term of EOS}$ $\sim 0.1 \text{ fm}^{-3}$

> > Neutron skin thickness $\Delta R \sim L \times \delta + correction term \delta = (N - Z)/A, A > 40$

Measurement of δ dependence of ΔR

Neutron Skin Measurements and Models

Neutron Skin Measurements and Models

 σ_{I} (Interaction cross section) \rightarrow Matter Radius σ_{CC} (Charge changing cross section) \rightarrow Charge Radius