Present status and future plans for MRTOF-MS at RIBF

シューリ Peter SCHURY

高エネルギー加速器研究機構、素粒子原子核研究所、 和光原子核科学センター / 短寿命核グループ

Multi-Reflection Time of Flight Mass Spectrographs

- Originally proposed by H. Wollnik before 1990
- Implementation required technological advances
 - Stable voltages
 - Fast switches
 - Computation improvements
- Initially limited interest
 - ORNL
 - Giessen
 - ESA
 - RIKEN
- Suddenly becoming popular
 - Nearly every facility now developing

MRTOF-MS at RIBF

- RIB created at high-energy
 - $10 \text{ MeV} \sim 200 \text{ MeV/A}$
- Need to thermalize for ion trapping
 - Gas cells!

- RIB created at high-energy
 - $10 \text{ MeV} \sim 200 \text{ MeV/A}$
- Need to thermalize for ion trapping
 - Gas cells!

- RIB created at high-energy
 - $10 \text{ MeV} \sim 200 \text{ MeV/A}$
- Need to thermalize for ion trapping
 - Gas cells!

- Ions are stopped in helium
- Pushed to carpet
- Extracted by traveling wave

- Ions are stopped in helium
- Pushed to carpet
- Extracted by traveling wave

- Multi-directional flat trap converts continuous beam into beam pulses
- Ejection provides start signal for TDC
- Allows simplified referencing
- Will allow simple beam splitting

1. Accumulate and cool Ions in trap

Approx. Potential

1. Accumulate and cool Ions in trap

2. Lower voltage on injection mirror

- 1. Accumulate and cool Ions in trap
- 2. Lower voltage on injection mirror
- 3. Eject ions from trap

- 1. Accumulate and cool Ions in trap
- 2. Lower voltage on injection mirror
- 3. Eject ions from trap
- 4. Raise voltage on injection mirror

- 1. Accumulate and cool Ions in trap
- 2. Lower voltage on injection mirror
- 3. Eject ions from trap
- 4. Raise voltage on injection mirror
- 5. Wait for N reflections

- 1. Accumulate and cool Ions in trap
- 2. Lower voltage on injection mirror
- 3. Eject ions from trap
- 4. Raise voltage on injection mirror
- 5. Wait for N reflections
- 6. Lower voltage on ejection mirror

Approx. Potential

1. Accumulate and cool Ions in trap

- 2. Lower voltage on injection mirror
- 3. Eject ions from trap
- 4. Raise voltage on injection mirror
- 5. Wait for N reflections
- 6. Lower voltage on ejection mirror
- 7. Detect ions at MCP

Performance limited by voltage stability

Electrode	$\frac{\Delta t}{t} / \frac{\Delta V}{V}$	Electrode	$\frac{\Delta t}{t} / \frac{\Delta V}{V}$
ejL	-0.032	Drift	-0.265
ej1C	-0.163	in1C	-0.216
ej10	0.002	in10	<0.001
ej2	-0.076	in2	0.030
ej3	-0.052	in3	0.004
ej4	0.021		
ej5	0.077		
ej6	0.019		
ej7	0.012		
Mirror	0.035		

Performance limited by voltage stability

Precision ADC

PID Contoller

Performance limited by voltage stability

REDACTED

Analysis method

- Typically, time of flight systems require two calibration references
 - Two unknowns need to be determined

•
$$t = t_0 + \sqrt{m} \cdot \kappa$$

- We can measure t₀, have long time-of-flight
 - Only need one nearby reference

Analysis method

- The peak shape is not Gaussian
- Has exponential(ish) tail
- Reproduced well be exponential-Gaussian hybrid

Analysis method

$$t = t_0 + \oint \sqrt{\frac{m}{2E}} dl$$

Measured time-of-flight

to is a delay between TDC and ion start $\frac{m}{m_{\rm ref}} = \left(\frac{t - t_0}{t_{\rm ref} - t_0}\right)^2$

$$\frac{\delta m^{\text{stat}}}{m} = \sqrt{4\left[\frac{\delta t}{t} + \frac{\delta t_{\text{ref}}}{t_{\text{ref}}}\right]^2 + \left[\frac{\delta m_{\text{ref}}^2}{m_{\text{ref}}^2}\right]}$$

Standard statistical treatment

$$\delta m^{
m sys} = 2m_{
m ref} rac{t(t-t_{
m ref})}{t_{
m ref}^3} \delta t_0$$

The to-term introduces
systematic error

Early offline results

Early offline results

Early offline results

First online results

- Performed at prototype SLOWRI Facility at RIPS
- Gas cell was optimized for light ions
- Stable references were limited

First online results

- Performed at prototype SLOWRI Facility at RIPS
- Gas cell was optimized for light ions
- Stable references were limited

First online results with heavy ions

- Fusion-evaporation
- ${}^{165}\text{Ho}({}^{40}\text{Ar},4n){}^{201}\text{At}$
- ${}^{169}\text{Tm}({}^{40}\text{Ar}, \text{xn}){}^{209-\text{x}}\text{Fr}$
- ¹³³Cs⁺ used as reference

First online results with heavy ions

First online results with heavy ions

Concomitant referencing

REDACTED

Concomitant referencing

REDACTED

Future Plans

• GARIS-II

- Push into SHE region
- Change the paradigm of identification

• SLOWRI

• Study light r-process nuclei

• KISS

• Study heavier r-process nuclei

- · Already start to see increase in SF
- Eventually longer $T_{1/2}$ will become bottleneck, too

- As we approach island of stability, half-lives can be days to years
- Implantation-decay correlation becomes nearly impossible
- But mass spectroscopy becomes more reasonable!

- Add half-size MRTOF
- Implement ESI reference source
- Develop new α-ToF detector

For very low yield (<1/hr?) we need to be certain we are not seeing spurious events -- e.g. noise or cosmic rays

- Let's modify a commercial ToF detector!
- MagneToF uses secondary electrons
- Replace emission surface with Si detector!
- After ToF signal, we can wait for α- or β- decay signal
- Mass and half-life simultaneously?
- α-energy gates can resolve isomers

For very low yield (<1/hr?) we need to be certain we are not seeing spurious events -- e.g. noise or cosmic rays

- Let's modify a commercial ToF detector!
- MagneToF uses secondary electrons
- Replace emission surface with Si detector!
- After ToF signal, we can wait for α- or β- decay signal
- Mass and half-life simultaneously?
- α-energy gates can resolve isomers

MRTOF-MS at SLOWRI

- Parasitic testing using PALIS
- Wideband operation with main gas cell

MRTOF-MS at SLOWRI

MRTOF-MS at SLOWRI

By accepting a wide-range cocktail beam, masses of many species of ions can be simultaneously measured.

In principle, the entire region from ⁷⁸Ni to ¹³²Sn could be analyzed with 6 tunes of BigRIPS.

Future at KISS

- KEK Isotope Separator System
- Use MNT to produce RI for 3rd peak of r-process
 - Need T1/2 and mass
- Neutralize in Ar and laser ionize

Future at KISS

• Using MRTOF we can measure masses and $T_{1/2}$?

MRTOF-MS will cover the entire range at RIBF

