#### Study of the $K^{\text{bar}}$ -nucleus interaction by using the ${}^{12}C(K^{-}, p)$ reaction at J-PARC

#### Yudai Ichikawa (JAEA) for the J-PARC E05 Collaboration

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016) at Kyoto

## J-PARC E05 Collaboration

- Kyoto University
  - H. Ekawa, S. Kanatsuki, T. Nagae, T. Nanamura, M. Naruki
- JAEA
  - S. Hasegawa, K. Hosomi, Y. Ichikawa, K. Imai, H. Sako, S. Sato, H. Sugimura, K. Tanida
- Osaka University
  - K. Kobayashi, S.H. Hayakawa, T. Hayakawa, R. Honda, Y. Nakada, M. Nakagawa, A. Sakaguchi
- Tohoku University
  - Y. Akazawa, M. Fujita, K. Miwa, Y. Sasaki, H. Tamura
- KEK
  - K. Aoki, T. Takahashi, M. Ukai
- Korea University
  - J.K, Ahn, W. Jung, S. H. Kim
- Torino University
  - E. Botta, A. Feliciello, S. Marcello
- JINR
  - P. Evtoukhovitch, Z. Tsamalaidze,
- Seoul National University
  - J.Y Lee, T. Moon
- Gifu University
  - S. Kinbara
- Kitasato University
  - T. Hasegawa
- RCNP
  - K. Shirotori, T. Gogami



2015/11/19 J-PARC K1.8 Counting Room

## Contents

- Introduction
  - *K*<sup>bar</sup>-nucleus interaction
  - KEK E548 experiment
  - Theoretical criticism for E548
- ${}^{12}C(K^{-}, p)$  study in the J-PARC E05 pilot run
  - Detector setup
  - Preliminary analysis result
- Summary

## K<sup>bar</sup>-A interaction

#### An important tool is kaonic atoms.

#### Simple tp approach

$$\begin{split} & [\Delta - 2\mu(B + V_{opt} + V_c) + (V_c + B)^2]\Psi = 0\\ & 2\mu V_{opt}(r) = -4\pi \Big(1 + \frac{\mu}{m} \frac{A - 1}{A}\Big) b_0 \rho(r)\\ & \boxed{\operatorname{Re}(\mathsf{V}_0) \sim -80 \,\operatorname{MeV}} \end{split}$$

#### - DD(Density dependent) potential

$$b_0 \rightarrow b_0 + B_0[\rho(r)/\rho_0]$$

 $Re(V_0) = -(150-200) MeV$ 

- Fourier-Bessel method

Re(V<sub>0</sub>) ~ -(170) MeV

 IHW K<sup>bar</sup>N interaction+phenomenological multi-nucleon absorption

Re(V<sub>0</sub>) ~ -(170) MeV

Chiral motivated model

 $Re(V_0) \leq -60 MeV$ 



## K<sup>bar</sup>-A interaction

#### An important tool is kaonic atoms.



The depth of *K*<sup>bar</sup>-nucleus potential strongly depends on the model setting. It is not conclusive whether *K*<sup>bar</sup>-nucleus potential is "deep" or "shallow"!! Both type of potential can reproduce the kaonic atoms data.

#### To solve this problem,



Chiral motivated model

 $\text{Re}(V_0) \leq -60 \text{ MeV}$ 



# KEK E548 [<sup>12</sup>C(K<sup>-</sup>, N) spectrum]

T. Kishimoto et al., PTP 118, 1 (2007)



- <sup>12</sup>C(K<sup>-</sup>, n), <sup>12</sup>C(K<sup>-</sup>, p) at 1GeV/c
  - K⁻ beam: 10<sup>4</sup>/spill
  - KEK-PS K2 beamline + KURAMA
  - MM resolution ~ 10 MeV ( $\sigma$ )
  - $\theta_{sc} < 4.1^{\circ}$  was chosen
- $V_{\rm opt}$  was studied comparing DWIA
  - C(K<sup>-</sup>, n): V<sub>opt</sub> = (Re -190, Im -40) MeV

- C(K<sup>-</sup>, p): V<sub>opt</sub> = (Re -160, Im -50) MeV (dotted line: Vopt = (-60, -60) MeV)

6



## Discussion for KEK E548

- V. K. Magas *et al.*, pointed out a serious drawback in this experimental setup.
  - In E548, at lest one charged particle detected by their decay counter was required (semi-inclusive spectrum).
    V. K. Magas et al., PRC 81, 024609 (2010).



#### [Simulation]

 $\theta_{\rm K}$  and mom<sub>K</sub> of K<sup>-</sup> for K<sup>-</sup>p  $\rightarrow$  K<sup>-</sup>p ( $\theta_{\rm p}$  < 4.1°) w/o FM for p<sub>K</sub> = -1.0 and -1.8 GeV/c



#### Criticism for KEK-PS E548

V. K. Magas et al., PRC 81, 024609 (2010).

#### Monte Carlo study for the semi-inclusive spectra.

Although their calculation is not realistic, they conclude the semi-inclusive spectra can distort the original inclusive spectra.

→ Semi-inclusive spectra doesn't have enough sensitivity !!



FIG. 8. (Color online) Calculated  ${}^{12}C(K^-, p)$  spectra for  $V_{opt} = (-60, -60)\rho/\rho_0$  MeV and  $V_{opt} = (-200, -60)\rho/\rho_0$  MeV, taking into account all contributing processes (solid and dot-dashed lines) and imposing the minimal coincidence requirement (dashed and dotted lines).

# <sup>12</sup>C(*K*<sup>-</sup>, *p*) data as a by-product of J-PARC E05 experiment

# J-PARC EO5 experiment Search for $\Xi$ -hypernucleus ${}^{12}{}_{\Xi}$ Be by using ${}^{12}C(K^{-}, K^{+})$ reaction at $p_{K} = 1.8$ GeV/c

#### \*Purpose

- \* Confirm the existence of
  - E-hypernucleus as a peak
- \* Ξ-nucleus potential depth and width

S-2S spectrometer will be usedfor the E05 experiment.In the last October, pilot runusing the SKS was carried out.



# <sup>12</sup>C(*K*<sup>-</sup>, *p*) in E05 pilot run

- Goal of this measurement
  - Compare the real inclusive spectrum with DWIA calculation.
  - Search for the Kaonic nuclei
  - Check the semi-inclusive effect by decay counter ("KIC").

We took this data as a byproduct of E05 (2015/10).





### Review of KIC

KIC ("K<sup>-</sup> identification counter") was installed to check the distortion effect. KIC: 4 segments (U, D, L, and R). KEK E548: only (U and D) .

The U and D configuration of KIC is same as KEK E548 detector (called as "CV") .



#### Data summary

| Target                                                               | Beam mom (p <sub>K</sub> -)<br>[GeV/c] | N <sub>beam</sub> ×ε <sub>DAQ</sub><br>[G Kaon] |
|----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| CH <sub>2</sub><br>[9.54 g/cm <sup>2</sup> ]<br>(Elementary process) | 1.5                                    | 2.08                                            |
|                                                                      | 1.6                                    | 2.19                                            |
|                                                                      | 1.7                                    | 2.06                                            |
|                                                                      | 1.8                                    | 7.30                                            |
|                                                                      | 1.9                                    | 0.87                                            |
| Carbon<br>[9.36 g/cm²]                                               | 1.5                                    | 0.57                                            |
|                                                                      | 1.8                                    | 56.6                                            |

#### CH<sub>2</sub> data for elementary process We will evaluate the elementary differential cross section for $K^-p \rightarrow K^-p$ elastic scattering process precisely.



## CH<sub>2</sub> data for elementary process

We will evaluate the elementary differential cross section for  $K^-p \rightarrow K^-p$  elastic scattering process precisely.



# $p(K^{-}, p)$ spectrum at 1.8 GeV/c

#### We could fit the obtained spectrum.

- A proton target data was evaluated by using CH<sub>2</sub> and C target data.
- Each yield was free parameter.
- The resonance production processes such as  $K^{-}p \rightarrow K^{*}(892)^{-}p \rightarrow \overline{K}\pi p$ and  $K^{-}p \rightarrow \Lambda(1520)\pi^{0} \rightarrow \overline{K}\pi p$  were included.



## <sup>12</sup>C(K<sup>-</sup>, p) inclusive spectrum analysis

There are significant yield in the bound region same as KEK E548. We could obtain the reasonable solution for 0.15 < -BE < 0.4 [GeV] region with toy model fitting, whose yields were free parameters. However, we could not reproduce -BE < 0.1 [GeV] region.



## <sup>12</sup>C(K<sup>-</sup>, p) inclusive spectrum analysis

There are significant yield in the bound region same as KEK E548. We could obtain the reasonable solution for 0.15 < -BE < 0.4 [GeV] region with toy model fitting, which was not included interactions. However, we could not reproduce -BE < 0.1 [GeV] region.



## **Coincidence** analysis

We can see the coincidence probability drop around Elastic region as we expected. However, the coincidence probability is more drastically dropped around BE = 0 GeV. In principle, the final state of BE < 0 region should be included  $\Lambda$  or  $\Sigma$  or  $\pi$ . Thus, the coincidence probability for BE < 0 region should be higher than QF elastic region.

# The KEK E548 coincidence (UD coin) has distorted original inclusive spectrum.



# Coincidence analysis ( $0^{\circ} < \theta_{Kp} < 4.1^{\circ}$ )

Comparison the BE spectrum for each KIC multiplicity condition. It seems there are non-exponential component ("KINK") around  $-BE \sim -0.1 \text{ GeV}$ .



# Coincidence analysis ( $0^{\circ} < \theta_{Kp} < 4.1^{\circ}$ )

Comparison the BE spectrum for each KIC multiplicity condition. It seems there are non-exponential component ("KINK") around  $-BE \sim -0.1 \text{ GeV}$ .



# Coincidence analysis $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$

Similar "KINK" structures can be seen in the larger scattering angle  $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$  spectra.



# Coincidence analysis $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$

Similar "KINK" structures can be seen in the larger scattering angle  $(4.1^{\circ} < \theta_{Kp} < 8.2^{\circ})$  spectra.



#### Discussion for the origin of "KINK"



## Theoretical calculation

Theoretical calculation for  ${}^{12}C(K^-, p)$  reaction of  $p_K = 1.0 \text{ GeV}/c$  was carried out by J. Yamagata-Sekihara et al.

We hope to compare the obtained spectrum with theoretical calculation of  $p_{\kappa} = 1.8 \text{ GeV}/c$ .



## Summary

- K<sup>bar</sup>-A interaction is studied by kaonic atom data *etc*..
  - It is still under discussion whether the potential is "deep" or "shallow".
  - <sup>12</sup>C(K<sup>-</sup>, N) spectra were compared with DWIA calculation by KEK E548.
    The charged particle hit requirement might distort the inclusive spectrum.
- We took <sup>12</sup>C(K<sup>-</sup>, p) real inclusive spectrum as a by-product of J-PARC E05 experiment in October 2015.
  - We will show  $d\sigma/d\Omega_{\kappa^- p \to \kappa^- p}$  at  $p_{\kappa} = 1.5, 1.6, 1.7, 1.8, and 1.9 \text{ GeV/c}$ .
  - We observed the significant yield in bound region same as KEK E548. The <sup>12</sup>C(K<sup>-</sup>, p) spectrum couldn't be reproduced –BE < 0.1 GeV region by toy model fitting, which is not included secondary reactions.
  - We have found the coincidence distorted the original spectrum.
  - − It seems there are "KINK" structure around BE ~ 0.1 GeV. It might be originated from the threshold of  $K^-N$ →Σπ absorption.
  - We will compare our spectrum with theoretical calculation.