Studying nucleon partonic structure with the COMPASS unpolarised Drell-Yan programme

Takahiro Sawada
Institute of Physics, Academia Sinica, Taiwan
(on behalf of the COMPASS Collaboration)

MENU2016, Kyoto, Japan
27 July, 2016
Outline

• COMPASS facility at CERN
• Nucleon Tomography at COMPASS
• Experimental Set-up
• Kinematics and Acceptance
• Physics Run in 2015
• Reachable Physics from COMPASS-DY
• Feasibility for COMPASS (beyond 2020)
• Reachable Physics from Future COMPASS-DY
• Summary
Drell-Yan experiment at COMPASS

- **2014**: DY Pilot Run (without target polarisation)
 17 days of stable data taking
- **2015**: DY Physics Run (1st year)
 4 months of stable data taking
- **2016-2017**: DVCS Run
- **2018**: DY Physics Run (2nd year)
COMPASS facility at CERN

COMPASS

- **CO**mmon **M**uon and **P**roton **A**pparatus for **S**tructure and **S**pectroscopy

- Fixed target experiment at the end of M2 SPS beam line
- Nearly 220 physicists from 13 countries and 24 institutions
Beam:
- Polarized lepton beam: μ^+, μ^- 50-280 GeV/c
- Hadron beam: π^+, π^-, K^+, K^-, p

Target:
- Polarized proton and deuteron target
- Liquid hydrogen target
- Nuclear targets

Powerful tracking system: 350 planes
PID: μ-Walls, Calorimeters, RICH

Various Combinations of Beam & Target

Target Region
Large Angle Spectrometer (LAS)
Small Angle Spectrometer (SAS)

ECAL & HCAL
GEM, SciFi
MicroMega, DC, straw
MWPC, GEM, SciFi
MW1
MW2

SM1
SM2

RICH

Beam:

COMPASS facility at CERN
Nucleon Tomography

Wigner Distributions

\[W(x, \vec{b}_\perp, \vec{k}_\perp) \]

\[\int d\vec{b}_\perp \int d\vec{k}_\perp \]

Momentum tomography

\[f(x, \vec{k}_\perp) \]

\[\int d\vec{k}_\perp \]

Spatial tomography

\[H(x, \vec{b}_\perp) \]

\[\int d\vec{b}_\perp \int dx \]

Longitudinal momentum density

\[f(x) \]

\[\int dx \]

Spatial density

\[F(\vec{b}_\perp) \]

Form Factors

Transverse Momentum Dependent distribution functions

TMDs

GPDs

Generalized Parton Distributions

PDFs

1D

3D

5D

Wigner Distributions

Spatial density

Form Factors
Nucleon Tomography at COMPASS

Wigner Distributions

\[W(x, \vec{b}_\perp, \vec{k}_\perp) \]

\[\int d\vec{b}_\perp \]

\[\int d\vec{k}_\perp \]

Momentum tomography

Spatial tomography

5D

3D

\[f(x, \vec{k}_\perp) \]

\[H(x, \vec{b}_\perp) \]

SIDIS

Drell-Yan

TMDs

GPDs

DVCS

COMPASS I (2002-2011)

- Longitudinally polarised DIS and SIDIS
- Transversely polarised SIDIS
- Hadron spectroscopy
- Pion polarisability

COMPASS II (2012-2018)

- DVCS
- Transversely polarised Drell-Yan
- Hadron spectroscopy

This talk (unpol. DY)

Next talk (pol. DY)
COMPASS for Drell-Yan setup

Beam
- 190 GeV/c π^-
- Intensity: $10^8 \pi^-$/s

Magnet
- Solenoid: 2.5 T
- Dipole: 0.5 T

Polarized NH$_3$ targets
- Dilution factor: 0.22
- Polarization: > 90%

Hadron Absorber
- Large Stopping Power for hadrons
- Small Multiple Scattering for leptons
- Radiation Shielding

Stainless Stell Alumina (Al$_2$O$_3$)
+ Surrounded by concrete on each side

Vertex Detector

Nuclear Targets
(Unpolarised)
Kinematics and Acceptance

- The COMPASS acceptance covers the **valence quark region**
- \(<P_T> \sim 1\text{GeV} – TMDs induced effects expected to be dominant with respect to the higher QCD corrections**
The COMPASS acceptance covers the **valence quark region**

\(<P_T> \sim 1\text{GeV} – \text{TMDs induced effects expected to be dominant with respect to the higher QCD corrections}\)

Kinematics and Acceptance

u-quark Sivers from SIDIS

\(-x f_T^{(1)} u(x)\)

\(Q^2=25\text{ GeV}^2\)

- **Generated**
- **Accepted**

Large detector acceptance (~40%)
Typical acceptance of the DY experiments performed so far was 4-6% (NA10, NA50, E615)

Large detector acceptance (~40%)
Drell-Yan – Physics run in 2015

Beam
- 190 GeV/c π^-
- Intensity: $10^8 \pi^-/s$

Polarized NH$_3$ targets

Vertex Detector

Hadron Absorber

Al

W beam plug

Z-coordinate of vertex distribution for $\mu^+\mu^-$ pairs

Blue(filled): Events used for analysis

COMPASS ongoing analysis
Drell-Yan 2015 data (~30%)
$4 < M_{\mu\mu}/(\text{GeV}/c^2) < 9$
Drell-Yan – Physics run in 2015

Polarized NH₃ targets

COMPASS ongoing analysis
Drell-Yan NH₃ 2015 data (~30%)

Blue(filled):
Events used for analysis

W beam plug

COMPASS ongoing analysis
Drell-Yan W 2015 data (~30%)
Polarized NH₃ targets

- **Intermediate Mass Region** \((2 < M_{\mu\mu} < 2.5 \text{ GeV}/c^2) \)
 - High DY cross section
 - Open-charm
 - Combinatorial background

- **J/ψ Region** \((2.5 < M_{\mu\mu} < 4 \text{ GeV}/c^2) \)
 - J/ψ dominant

- **High Mass Region** \((4 < M_{\mu\mu} < 9 \text{ GeV}/c^2) \)
 - Clean DY signal (Negligible background)
 - Low cross section
Reachable Physics from Current COMPASS-DY

Beam: π^-

Target: NH$_3$(polarised/unpolarised), Al, W

Observable physics process:
- (final state : 2mu): J/ψ, DY, (ψ'), Υ, (open-charm)
- (3mu): open-beauty
- (4mu): double J/ψ

Observables and physics:

- Angular distributions from polarised NH$_3$ target:
 - Sivers functions of valence quarks in proton (DY)

- from unpolarised NH$_3$, Al, W:
 - Boer-Mulders functions of valence quarks in proton (DY)
 - Lam-Tung violation (DY)
 - Higher Twist & Pion DA (DY at large x_1)

- A-dependence of x_1, x_F distributions (DY, J/ψ):
 - Quark energy loss in the cold nuclear matters

- Absolute production cross sections (DY, J/ψ, (double J/ψ)):
 - pion PDF
 - J/ψ production mechanism

- Υ and open-beauty production

(Blue) Physics from unpolarised nucleon
Reachable Physics from Current COMPASS-DY

Beam: π^-
Target: NH$_3$(polarised/unpolarised), Al, W
Observable physics process:
(final state : 2mu): J/ψ, DY, (ψ'), Υ, (open-charm)
(3mu): open-beauty
(4mu): double J/ψ

Observables and physics:

Angular distributions from polarised NH$_3$ target:
- Sivers functions of valence quarks in proton (DY)

From unpolarised NH$_3$, Al, W:
- Boer-Mulders functions of valence quarks in proton (DY)
- Lam-Tung violation (DY)
- Higher Twist & Pion DA (DY at large x_1)

A-dependence of x_1, x_F distributions (DY, J/ψ):
- Quark energy loss in the cold nuclear matters

Absolute production cross sections (DY, J/ψ, (double J/ψ)):
- pion PDF
- J/ψ production mechanism

Υ and open-beauty production

A-dependence of P_T distributions (DY, J/ψ):
- EMC effect
- J/ψ formation

Next page
Drell-Yan decay angular distributions

Collins-Soper frame

θ and ϕ are the decay polar and azimuthal angles of the μ^+ in the dilepton rest-frame.

\[
\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi) \\
\propto (W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_\Delta \sin^2 \theta \cos 2\phi)
\]

$q\bar{q}$ annihilation parton model:

$O(\alpha_s^0) \quad \lambda = 1, \mu = \nu = 0; \quad W_T = 1, W_L = 0$

Lam-Tung relation (1978): test of QCD effect

Collinear pQCD: $O(\alpha_s^1), \quad W_L = 2W_\Delta; \quad 1 - \lambda - 2\nu = 0$
Violation of Lam-Tung Relation (1)

CERN NA10

\[\pi^- + W \ 140 \text{ GeV} \quad \pi^- + W \ 194 \text{ GeV} \quad \pi^- + W \ 286 \text{ GeV} \]

\[P_T[\text{GeV}] \]

LT relation was violated at large \(p_T \)

1 - \(\lambda \) - 2\(\nu \) = 0
Violation of Lam-Tung Relation (2)

FNAL E615

252-GeV $\pi^- + W$

$\cos 2\phi$ modulation at large p_T

$1 - \lambda - 2\nu = 0$
Spin-orbit correlation of transversely polarized noncollinear partons inside an unpolarized hadron

\[h_1^\perp = \]

- Boer-Mulders Function \(h_1^\perp \): a correlation between quark's \(k_T \) and transverse spin \(S_T \) in an unpolarized hadron

- \(h_1^\perp \) can lead to an azimuthal dependence with \(\frac{\nu}{2} \propto h_1^\perp(N)\bar{h}_1^\perp(\pi) \)

\[h_1^\perp(x, k_T^2) = C_H \frac{\alpha_T}{\pi} \frac{M_C M_H}{k_T^2 + M_C^2} e^{-\alpha_T k_T^2} f_1(x), \]

\[\nu = 16k_1 \frac{p_T^2 M_C^2}{(p_T^2 + 4M_C^2)^2}, \quad k_1 = C_{H1} C_{H2}/2 \]

\[\kappa = \frac{\nu}{2} \to 0 \text{ for large } |k_T| \]

Consistency of factorization in term of TMDs
Projected Uncertainties

- 30% of 2015 data
- π^- beam, NH$_3$ target
- $4 \leq M_{\mu\mu} \leq 9$ GeV/c2

Sivers

- COMPASS Drell-Yan NH$_3$ 2015 data (~30%)
- Estimated uncertainties (ongoing analysis)
- $4 < M_{\mu\mu}$(GeV/c2) < 9

Boer-Mulders

- COMPASS Drell-Yan NH$_3$ 2015 data (~30%)
- Estimated uncertainties (ongoing analysis)
- $4 < M_{\mu\mu}$(GeV/c2) < 9

Pretzelosity

- COMPASS Drell-Yan NH$_3$ 2015 data (~30%)
- Estimated uncertainties (ongoing analysis)
- $4 < M_{\mu\mu}$(GeV/c2) < 9

Transversity

- COMPASS Drell-Yan NH$_3$ 2015 data (~30%)
- Estimated uncertainties (ongoing analysis)
- $4 < M_{\mu\mu}$(GeV/c2) < 9

Proton BM extracted from SIDIS or pp/pd DY

- Measurement of $A_T \propto h_{1,\pi}^{q} \otimes h_{1,p}^{q}$
- Proton BM
- (Model dependent)
Feasibility for COMPASS (beyond 2020)

First ideas: submitted to European Strategy Preparatory Group, 2012

- Hadron Spectroscopy: 280 GeV, \(\pi, K, \bar{p}\) separation
- GPD \(E\): Measurements with a polarised target
- SIDIS: 100 GeV, transversely polarised \(p\) and \(d\) targets
- Drell-Yan: Transversely polarised \(d\) and \(p\) targets, Unpolarised \(p\), \(d\) targets, Nuclear targets (EMC effect), \(\pi, K, \bar{p}\) separation

Dedicated workshop before proposal:

[Link to workshop information]

Mar. 2016
Unseparated $\pi/K/\bar{p}$ beams and beam PID

Fraction of particles in the positive or negative M2-Hadron-beam at COMPASS target

Beam PID by CEDAR (Cerenkov Differential Counters with Achromatic Ring Focus)

http://www.staff.uni-mainz.de/jasinsk/index.htm
Possibility of RF Separated $\pi/K/\bar{p}$ Beam?

First and very preliminary thoughts, guided by:
- recent studies for P326
- CKM studies by J.Doornbos/TRIUMF, e.g. http://trshare.triumf.ca/~trjd/rfbeam.ps.gz

E.g. a system with two cavities:

\[
DF = 2p \left(\frac{L}{c} \right) (b_1^{-1} - b_2^{-1}) \quad \text{with} \quad b_1^{-1} - b_2^{-1} = \frac{(m_1^2 - m_2^2)}{2p^2}
\]

Table: Particle Characteristics

<table>
<thead>
<tr>
<th>Particle type</th>
<th>From CKM beam</th>
<th>Antiproton beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam momentum (GeV/c)</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Momentum spread (%)</td>
<td>±1</td>
<td>±2</td>
</tr>
<tr>
<td>Angular emittance H,V (mrad)</td>
<td>±3.5, ±2.5</td>
<td>±3.5, ±2.5</td>
</tr>
<tr>
<td>Solid angle (μsterad)</td>
<td>10-12π</td>
<td>10-12π</td>
</tr>
<tr>
<td>% wanted particles lost on dump</td>
<td>37</td>
<td>20</td>
</tr>
</tbody>
</table>

Kaon and Anti-Proton Flux possibly reaching $10^7 p./s$
Reachable Physics from **Future COMPASS-DY**

Beam: π^-, K^-, \bar{p}

Target: polarised NH$_3$, 6LiD

unpolarised Long-LH$_2$, Long-LD$_2$, Nuclear targets

(Blue) Physics from unpolarised nucleon

Observables and physics:

Angular distributions

- with π^- beam and trans. polarised 6LiD target
 - flavor separation of Sivers

- with \bar{p} beams and trans. polarised NH3 target
 - Model independent extraction of the proton Sivers- and Boer-Mulders

 ↓

- with π^- / K^- beams
 - Boer-Mulders quark distributions for Pions and Kaons

with K beam (and long-LH$_2$ target)

- Nucleon strange quark structure
- Kaon PDFs

with $\pi^- / K^- / \bar{p}$ beams

- Differentiating the origin of Lam-Tung violation
- $\pi / K / \bar{p}$ Distribution Amplitude

with Long-LD$_2$ and nuclear targets

- EMC effect

- with lower momentum π^- beam
 - Exclusive production near $x_F \rightarrow 1$
 (DY, J/ψ): GPD and pion DA
Reachable Physics from **Future COMPASS-DY**

Beam: $\pi^−, K^−, \bar{p}$
Target: polarised NH$_3$, 6LiD
unpolarised Long-LH$_2$, Long-LD$_2$, Nuclear targets

Observables and physics:

Angular distributions

- with $\pi^−$ beam and trans. polarised 6LiD target
 - flavor separation of Sivers

- with \bar{p} beams and trans. polarised NH3 target
 - Model independent extraction of the proton Sivers- and Boer-Mulders

 ↓

- with $\pi^−/ K^−/ \bar{p}$ beams
 - Boer-Mulders quark distributions for Pions and Kaons

- with K beam (and long-LH$_2$ target)
 - Nucleon strange quark structure
 - Kaon PDFs

- with $\pi^−/ K^−/ \bar{p}$ beams
 - Differentiating the origin of Lam-Tung violation
 - $\pi/ K/ \bar{p}$ Distribution Amplitude

- with Long-LD$_2$ and nuclear targets
 - EMC effect

- with lower momentum $\pi^−$ beam
 - Exclusive production near $x_F \to 1$
 (DY, J/ψ): GPD and pion DA
Model independent extraction of the proton BM function

Boer-Mulders from $\bar{p}p$ DY

$$A_U^{\cos 2\varphi} \propto h_{1,\bar{p}}^{\perp q} \otimes h_{1,p}^{\perp q}$$
beam BM target BM

DY from anti-proton beam and (polarised) proton target can be used to achieve a model independent extraction of the proton (Sivers-) and Boer-Mulders quark distributions.

After extracting the proton BM

DY from pion/Kaon beams and LH$_2$ target
\rightarrow pion/Kaon BM
Summary

- COMPASS collaboration at CERN have performed a series of Drell-Yan experiments using a high-intensity π^- beam with momentum 190-GeV/c impinging on a transversely polarised NH$_3$ target and unpolarised Al and W targets in 2015. A second year of data taking will be performed in 2018.
 - The experiment provides a greatly improved statistics for the unpolarised Drell-Yan and J/ψ measurements w.r.t. past experiments.

- We hope it will have a continuation as well in future (beyond 2020)
 - DY program with Improved CEDAR/RF-separated beam and LH$_2$/LD$_2$/nuclear targets will bring unique opportunities to address many important unresolved issues in understanding the flavor and TMD structures of proton, antiproton, pion, kaon and nuclei.