Study of the hadron structure using the polarised Drell-Yan process at COMPASS

Márcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration

27^{th} July 2016, MENU 2016 Kyoto

Márcia Quaresma (LIP)

CERN/FIS-NUC/0017/2015 MENU 2016

para a Ciência e a Tecnologia

COMPASS experiment at CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment at the end of M2 SPS beam line
- Around 240 collaborators from 13 countries and 22 institutes
- Data taking since 2002

COMPASS general purpose spectrometer

- Two stages spectrometer, wide angular acceptance, ± 180 mrad
- About 350 detector planes
- Particles identification: Calorimeters, RICH and μ Filters
- Muon and hadron beams
- Polarised target (longitudinally and transversely polarised NH₃ and ⁶LiD)

Polarised Target

In transverse mode polarisation reversal every 2 weeks

- NH₃ polarised target
- Polarisation ~ 80%
- \bullet dilution factor \sim 15% in SIDIS, \sim 22% in DY

Nucleon spin decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Presently the contribution from the quarks to the proton spin is $\Delta\Sigma \left(Q^2 = 3(\text{GeV}/c^2)^2\right) = 0.30 \pm 0.01(\text{stat}) \pm 0.02(\text{evol})$

The gluon's contribution seems small but with large uncertainties, more data is needed in a different phase space to constrain it

How to address the orbital angular momentum?

From 1D to 3D \Rightarrow How are the charges distributed inside the nucleon?

The 3D nucleon mapping in the momentum space is described by the Transverse Momentum Dependent (TMD) Parton Distribution Functions (PDFs)

Nucleon Structure - TMD PDFs

The nucleon structure at leading twist QCD, taking into account the quarks intrinsic transverse momentum, k_T , is described by 8 TMD PDFs for each quark flavour

- Contributions of f₁, g₁ and h₁ survive the integration over k_T
- The other 5 distributions describe correlations between the quark's k_T, its spin and the nucleon's spin
- Most of these TMD PDFs can be accessed in COMPASS from

SIDIS and DY

Single polarised DY

•
$$s = (P_a + P_b)^2$$

• $x_{a(b)} = q^2/(2P_{a(b)} \cdot q)$
• $x_F = x_a - x_b$
• $Q^2 = q^2 = M_{\mu\mu}^2 = sx_ax_b$
• $q_T = k_{Ta} + k_{Tb}$

DY is an excellent tool to access TMD PDFs at COMPASS:

- No fragmentation functions involved, but the convolutions of 2 PDFs.
- All the TMD PDFs are expected to be sizeable in the valence quark region dominant region when π^- is used as beam
- QCD TMD approach valid for Q $(M_{\mu\mu} > 4 \text{ GeV}/c^2) \gg \langle p_T \rangle \sim 1 \text{ GeV}/c$

```
Very low cross-section 
↓
High intensity beam
↓
Closed spectrometer adding a hadron absorber
```

Polarised DY programme

- π^- beam at 190 GeV/c
- two polarised NH₃ target cells

- Hadron absorber downstream of polarised target
 - ullet Stops hadrons and non interacting beam $\textcircled{\odot}$
 - Degrades resolutions 🙁
- thin lithium foil in the dowstream part of the absorber to stop the slow neutrons produced in the absorber and reduce the radiation level in the first detectors
- Al and W targets \rightarrow unpolarised DY studies \rightarrow See Takahiro Sawada's talk

DY and SIDIS cross sections in terms of leading twist asymmetries

$$d\sigma^{DY} \propto \left(1 + \cos^2(\theta) + \sin^2(\theta) A_{UU}^{\cos(2\phi)} \cos(2\phi)\right) + S_T \left[(1 + \cos(\theta)) A_{UT}^{\sin(\phi_S)} \sin(\phi_S) + \sin^2(\theta) \left(A_{UT}^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S) + A_{UT}^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S)\right)\right]$$

Leading twist asymmetries in DY and SIDIS - TMD PDFs

The same nucleon PDFs can be accessed through the two processes

Sivers function

Theoretical prediction of the Sivers sign change

$$\left.f_{1T}^{\perp}(x,k_T)\right|_{DY}=-f_{1T}^{\perp}(x,k_T)\right|_{SIDIS}$$

Crucial test of the QCD TMD approach

COMPASS SIDIS proton data from 2007 and 2010 Comparison between COMPASS and HERMES results \rightarrow Difference points to a possible Q^2 evolution effect

Márcia Quaresma (LIP

SIDIS Data MultiDimensional Analysis – Sivers asymmetry

2D analysis: 4 Q^2 ranges, each divided in bins of x, z, p_{Th} , W Contribution for evolution studies

Polarised DY data-taking at COMPASS

2009	2014	2015	
π^- beam at 190 GeV/ c			
$2 C_2 H_4$ cells unpolarised	2 NH_3 cells unpolarised	2 NH ₃ cells transversely polarised	
${\sf I}_{beam} \sim 1.6 imes 10^7 \pi/{ m s}$	$I_{beam} \sim 6 imes 10^7 \pi/s$	$I_{beam} \sim 8.1 imes 10^7 \pi/\mathrm{s}$	
3 days data taking	17 days of stable data taking	4 months of stable data taking	

Drell-Yan measurement - 2015 run

- Test production of 3/9 of the data collected in 2015
- Four mass ranges:
 - $1 < M_{\mu\mu} < 2 \text{ GeV}/c^2$
 - $2 < M_{\mu\mu} < 2.5 \text{ GeV}/c^2$
 - ▶ 2.5 < $M_{\mu\mu}$ < 4 GeV/ c^2 → J/ ψ region
 - 4 < $M_{\mu\mu}$ < 9 GeV/ c^2 \rightarrow High mass range

Dimuon mass distribution

• Continuum has several contributions:

- DY
- Open Charm $(D\overline{D}$ decays into correlated muons)
- Combinatorial Background (π and K decays into uncorrelated muons)
- small contamination for $M_{\mu\mu} > 4 \text{ GeV}/c^2$ (mainly from ψ')

${\rm J}/\psi$ and High mass regions

- All the targets are well separated (2 NH₃ cells, Al and W)
- $\bullet\,$ For the asymmetry studies only the events from the NH_3 target cells are used $\sim 30\%$ of statistics from all targets
- The optimization of selection criteria is still under study

${\rm J}/\psi$ region

- Much larger statistics wrt the high mass region, ~ 700k pairs but with several contributions
- Valence quarks region

Sivers asymmetry prediction for J/ψ

Recent publication from Anselmino et al, arXiv:1607.00275v1 (4 July)

Significant Sivers asymmetry in COMPASS kinematic coverage $\langle x_F \rangle \sim 0.2$ and $\langle q_T \rangle \sim 1.0 \text{ GeV}/c$

High mass region: $4 < M_{\mu\mu} < 9 \text{ GeV}/c^2$

• Valence quarks region

•
$$\langle q_T \rangle \sim 1 \text{ GeV}/c$$

• $\langle x_F \rangle \sim 0.3$

Future polarised DY programmes

Worldwide plans to study TMD PDFs via the polarised DY process

Facility	type	timeline
COMPASS	fixed target, $\pi^- p^{\uparrow}$	2015 + 2018
Fermilab (SeaQuest)	fixed target, $p^{\uparrow}p$	> 2016
RHIC (STAR*, PHENIX)	collider, $p^{\uparrow}p$	> 2016
J-PARC	fixed target, $p^{\uparrow}p$	> 2018
FAIR (Panda)	collider, $\bar{p}^{\uparrow}p^{\uparrow}$	> 2018
JINR (NICA)	collider, $p^{\uparrow}p^{\uparrow}$	> 2018

*STAR results on TSA in $p^{\uparrow} + p \rightarrow W^{\pm}/Z^{0}$ (PRL 116, 132301(2016)) corresponds to a very high $Q^{2} \sim 80^{2}$ (91²) (GeV/ c^{2})² and favour theoretical models that include a change of sign for the Sivers function, if TMD evolution effects are small.

Projected Sivers asymmetry uncertainty

2015 data + 2018 assuming 140 days

- ~ 2.3% statistical uncertainty
- Estimated systematic smaller than statistical

Márcia Quaresma (LIP

Final remarks

- The first ever polarised DY measurement using π[−] beam and proton polarised target was done by COMPASS in 2015.
 → These data are being analysed.
- Unique opportunity to extract the TMD PDFs from both SIDIS and DY in the same experiment.
- DY results will be fundamental to test the Sivers sign change prediction.
- The possibility to have a second year of polarised DY data taking in 2018 is about to be approved.

First COMPASS DY polarised data results on the asymmetries will be ready soon $\textcircled{\mbox{$\odot$}}$