

Meson - Spectroscopy with with COMPASS at CERN

Stephan Paul TU München

COMPASS performs physics with p, K, π beams

Examples will be given on

- Diffraction with π into 3π (this talk)
- Spectroscopy in strong interaction
 - Introduction
 - Identification method (PWA)
 - results for a_J and π_J states
- New insights into production/decay dynamics
- Conclusions

The COMPASS Experiment

Constituent Quarks and Mesons

C. Amsler et al., Phys. Rept. 389, 61 (2004)

Kinematics

Example: production of 3π

Kinematics and Isobars

First Impressions Motivation for Isobar Model

p

0

0.6 0.8

1

1.8

Mass of the $\pi^{-}\pi^{-}\pi^{+}$ System (GeV/ c^{2})

2

1.2 1.4 1.6

2.2 2.4

p Exzellenzcluster Universe

 $\pi^{-} p \rightarrow \pi^{-}\pi^{-}\pi^{+} p$ (COMPASS 2008)

 10°

 10^{5}

 10^{4}

0

0.2

0.4

0.6

used in analysis

 π^{-}

 π^{-}

 π^+

0.8

Squared Four-Momentum Transfer t' (GeV²/ c^2)

1.2

 $t_{3\pi}$

isobar

Partial wave analysis

inspired by M. Pennington

Art taken from Urs Wehrli: "Kunst aufgeräumt"

Exzellenzcluster Universe

What is PWA ?

Describe population in 5-dimensional phase space in $\pi\pi\pi$ by model

- Define a set of quantum numbers J^{PC}
- Define a set of possible decay channels for each J^{PC}
 - (X⁻ \rightarrow isobar + π ; isobar $\rightarrow \pi\pi$) : wave (88 waves used)
 - each such "wave" has a pre-determined population in phase space
 - each wave may have alignment of ${\it J}$ described by quantum number M
- For each bin of 20 MeV/c² mass of $\pi\pi\pi\pi$ and bin of t: determine which coherent combination of waves fits distribution best
- Obtain spin-density matrix

What is PWA ?

Describe population in 5-dimensional phase space in $\pi\pi\pi$ by model

- Define a set of quantum numbers J^{PC}
- Define a set of possible decay channels for each J^{PC}
 - (X⁻ \rightarrow isobar + π ; isobar $\rightarrow \pi\pi$) : wave (88 waves used)
 - each such "wave" has a pre-determined population in phase space
 - each wave may have alignment of J described by quantum number M
- For each bin of 20 MeV/c² mass of $\pi\pi\pi\pi$ and bin of t: determine which coherent combination of waves fits distribution best
- Obtain spin-density matrix
- Describe spin density matrix (submatrix) by model containing resonances and non-resonant contributions connecting all mass bins
 - Determine resonance parameters

2

step

Use helicity amplitudes :

5-dimensional phase space:

Use helicity amplitudes :

5-dimensional phase space:

Spectral shape of waves t dependence

low t

Model for Spin Density Matrix 쭏

Describe the results obtained independently in different mass bins by a model

- select physics contributions
- fit to spin density matrix (not only to simple mass spectra)
- use 14 waves (out of all 88 waves)
 - 722 free parameters
 - 76505 data points

Two types of contributions

Interferometry

• Axialvector mesons: 1⁺⁺

• Phases axialvector mesons: 1⁺⁺

0.15

0.05

Mass dependent fits

 $1^{++}0^{+}\rho\pi S$ $J^{PC}M^{\varepsilon}[isobar]\pi L$ Fit in 11 t-bins 11⁺⁺0⁺ ρ(770) π S $\pi p \rightarrow \pi \pi^{+} \pi p$ (COMPASS 2008) $0.262 \text{ GeV}^2/c^2 \le t' \le 0.326 \text{ GeV}^2/c^2$ $0.100 \text{ GeV}^2/c^2 \le t' \le 0.113 \text{ GeV}^2/c^2$ $0.449 \text{ GeV}^2/c^2 \le t' \le 0.724 \text{ GeV}^2/c^2$ $0.724 \text{ GeV}^2/c^2 \le t' \le 1.000 \text{ GeV}^2/c^2$ 0.16 vents (20 MeVic⁵) hoer of Events//20 MeV/c 80 F ≥ 0.14 70 F 0.12 en E 0 0.10 0.20 2 0.08 0.06 0.10 0.04 0.02 1.2

1.4 1.6

Mass of the x'x'x' System (GeV/c2)

1.8 2 2.2 2.4 Mass of the 1x*1x*1x System (GeV/c²)

Strongly t-dependent spectral shape around $a_1(1260)$ Interference of non-resonant with a₁(1260)

1.8 2 2.2 2.4 Mass of the ボボボ System (GeV/c²)

New Observation: a₁(1420)

Various explanations proposed for interpretation:

- Dynamics
 - Interference of $a_1(1260)$ with Deck amplitude ($\Delta \phi = 180^{\circ}$ shifted by 100 MeV) (Berger et al.)
 - triangular anomaly coupling $a_1(1260) \rightarrow KK^* \rightarrow KK\pi$ and $KK \leftrightarrow f_0(980)$ ($\Delta \phi = 90^0$) (Mikhasenko et al.)
 - triangular anomaly : $a_1(1260) \rightarrow f_0$ (980) π decay shows up 200 MeV above M($a_1(1260)$)

(Aceti et al.)

• Requires same t dependence for $a_1(1260)$ and $a_1(1420)$

- a₁ (1260) has larger slope for t distribution than a₁ (1420)
- a1 (1260) slope consistent to non-resonant contributions
-but : separation a₁ (1260) and non-resonant contribution difficult

• Axialvector mesons: 2⁺⁺

Mass dependent fits $a_2(1320)$

Strongly t-dependent interference effects high-mass a₂'

The Case of π_2

very different production/decay characteristics

The Case of π_2

very different production/decay characteristics

Background: $b = (13.5 \text{ GeV/c})^{-2}$

low t

high *t*

low t

high *t*

Exotic mesons: 1⁻⁺

6⁻⁺Deck Simulations - Data

- wave w/o resonance
- compare final states

Deck MC

0.5

1.5

2

m(3π) (GeV/c²)

2.5

0.5

......

2.5

2

m(3π) (GeV/c²)

1.5

Systematic Studies

- Largest set of systematic studies done ever
 - Omitting waves
 - Modification of resonance models
 - Variation of NR parametrization (analytical function vs. Deck MC)
 - Modified χ_2 use of correlation in spin-density matrix
 - alternating fit order of 700 parameters
- Biggest influence on
 - a₁(1260), a₂(1700), π₁(1600)
 - strong correlation $a_1(1260) \pi_1(1600)$ resonance parameters found

Axialvector Mesons

Pseudoscalar Mesons

COMPASS provides consistent analysis and realistic uncertainties

What about the building blocks

• We have solved a puzzle – but were the building blocks correct ?

New Paths to Meson Decays

- Select J^{PC} via PWA
- For each J^{PC} and mass-bin in 3π :
 - determine composition and shapes of 2π isobars
 - complex couplings
 - non-resonant contributions (via *t*-dependence)

New Paths to Meson Decays

- Select J^{PC} via PWA
- For each J^{PC} and mass-bin in 3π :
 - determine composition and shapes of 2π isobars
 - complex couplings
 - non-resonant contributions (via *t*-dependence)

Study decay of π (1800) into 3π

Here: 2π S-wave intermediate state

Perform de-isobaring of analysis extract 2π from data "model independent" (HQ decay language)

Study decay of π (1800) into 3π

Here: 2π S-wave intermediate state

 $(\pi\pi)_{s-wave}$ Similar for weak and strong decays !! Subtle differences will tell us more

Ongoing theory support allows to address challenging tasks

- Fit to $\pi\pi$ S-wave using known scattering amplitudes
 - Known up to 1.2 GeV/c^2
 - Combine with knowledge about higher mass scalars
- Include more 3π J^{PC} in freed- isobar analysis
- Includes more $2\pi J^{PC}$ in freed- isobar analysis
- Fit to spin-density matrix without BW
 - Use K-matrix parametrisation with analytical function and poles
 - Extract pole parameters
- Joint fit of $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ data

- Isobar model for 5π
- about 1500 possible amplitudes (L < 3)

• Access high mass resonances - investigate heavy isobars

- select low t (0.1 < t < 0.15) little non-exclusive bkgd.
- consider only small values *L*<3

Status

- Develop method to select most significant amplitudes
- Problems
 - Selection must be smooth across all mass bins
 - High sensitivity to isobar parametrization
 - Phase information much reduced
 - Many similarities to $\eta \pi \pi \pi$

Using new "2D" fit method to perform PWA in $m_{3\pi}$ and t :

- Find new iso-vector state $a_1(1420)$
 - $M_{a1(1420)} = 1412-1422 \text{ MeV/c}^2$, $\Gamma_{a1(1420)} = 130-150 \text{ MeV/c}^2$
 - (exclusive) decay into $f_0(980)\pi$ in relative P-wave
 - Nature of $a_1(1420)$?

- Determine resonance parameters from largest ever fit to spin density matrix
 - Coherent determination of a_J and π_J states
 - Largely consistent parameters with previous experiments
 - Reveal systematic uncertainties
 - existences of $\pi_1(1600)$ required

Conclusion

- Developed new method to establish shape of isobar-spectrum – first application: $[\pi\pi]_s^*$:
 - Strongly depends on $m_{3\pi}$ and on J^{PC} of mother wave
 - Reveals information on scalar isobars (measure phases in decays)
 - Extend to full isobar-free analysis (ongoing)
 - Iterative (bootstrapping) approach does not work !
 - Artifacts !! can be removed by proper treatment (work in progress)
 - Applications to heavy meson decays
- Kaon beam data analysis started

Open Path to Dalitz-plot analysis using PWA from PWA identified states

Needs high statistics !!

