

Unitary dispersive approach for the three pion light meson decays

Igor Danilkin

Thanks to **JPAC**: P. Guo, C. Fernandez-Ramırez, V. Mathieu and A. P. Szczepaniak

JG**|**U

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

MENU2016, Kyoto, July 25-30, 2016

- Introduction & motivation
- Light mesons decays:

 $\eta{\twoheadrightarrow}3\pi$ and light quark masses $\omega, \phi{\twoheadrightarrow}3\pi$

- Method (Khuri Treiman & Pasquier inversion)
- Results and outlook

Spectrum of QCD: complete understanding, discover new resonances, exotics ...

ω-meson discovered in ~1960th $π_P → ω_P, K_P → ωΛ, e^+e^- → 3π, p_P → ωππ, ...$ number of events: 10³ - 10⁴

Dalitz plot: $\omega \rightarrow 3\pi$

$$\frac{d^2\Gamma}{ds\,dt} \propto |\vec{p}_+ \times \vec{p}_-|^2 |F(s,t)|^2$$

ω-meson discovered in ~1960th π p →ω p, Kp →ωΛ, e⁺e⁻→ 3π, pp→ ωππ, ... number of events: $10^3 - 10^4$

Isospin violating decay: sensitive to quark mass difference

$$\frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$$

$$\Gamma_{\eta \to \pi^+ \pi^- \pi^0} = 66_{[\text{LO}]} + 94_{[\text{NLO}]} + \dots = 296 \pm 16 \,\text{eV}_{[\text{Exp}]}$$

Isospin violating decay: sensitive to quark mass difference

$$\frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$$

 Slow convergence of ChPT (importance of FSI)

$$\Gamma_{\eta \to \pi^+ \pi^- \pi^0} = 66_{[\text{LO}]} + 94_{[\text{NLO}]} + \dots = 296 \pm 16 \,\text{eV}_{[\text{Exp}]}$$

Isospin violating decay: sensitive to quark mass difference

 $\frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$

- Slow convergence of ChPT (importance of FSI)
- Slope parameter puzzle for $\eta \rightarrow 3\pi^0$

$$|A_{\eta\to 3\pi^0}|^2 \propto 1 + 2\alpha z + \dots$$

$$\Gamma_{\eta \to \pi^+ \pi^- \pi^0} = 66_{[\text{LO}]} + 94_{[\text{NLO}]} + \dots = 296 \pm 16 \,\text{eV}_{[\text{Exp}]}$$

Isospin violating decay: sensitive to quark mass difference

 $\frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$

- Slow convergence of ChPT (importance of FSI)
- Slope parameter puzzle for $\eta \rightarrow 3\pi^0$

$$A_{\eta \to 3\pi^0}|^2 \propto 1 + 2\alpha z + \dots$$

○ New data on η→ $\pi^+\pi^-\pi^0$

 WASA-at-COSY
 KLOE-2

 (2014)1.2×10⁷ decays
 (2016) 4.7×10⁶ events

Unitarity: for small s unitarily is "simple"

$$A(s,t) = \sum_{J}^{\infty} (2J+1) P_J(z) f_J(s)$$

Disc $f_J(s) = \rho(s) f_J(s+) f_J(s-)$

 $A(s,t) = \sum_{J}^{\infty} (2J+1) P_J(z) f_J(s)$ Disc $f_J(s) = \rho(s) f_J(s+) f_J(s-)$

Unitarity: for small s unitarily is "simple"

Crossing symmetry

 the same function A(s,t) should describe different processes (rotate the diagram by 90° or flip the leg)

 $A(s,t) = \sum_{J}^{\infty} (2J+1) P_J(z) f_J(s)$ Disc $f_J(s) = \rho(s) f_J(s+) f_J(s-)$

Unitarity: for small s unitarily is "simple"

Crossing symmetry

 the same function A(s,t) should describe different processes (rotate the diagram by 90° or flip the leg)

Analyticity

relates scattering amplitude at different energies

$$f_J(s) = \frac{1}{2\pi i} \int_C ds' \frac{f_J(s')}{s'-s} = \int_{-\infty}^0 \frac{ds'}{\pi} \frac{\text{Disc} f_J(s')}{s' \,\underline{T}(s)} = +\frac{1}{2\pi i} \int_{\mathcal{A}}^\infty \frac{ds'}{ds'} \frac{\text{Disc} f_J(s')}{s' \,\underline{T}(s)} \frac{ds'}{ds'} \frac{ds'}{s' \,\underline{T}(s')} \frac{ds'}{s' \,\underline{T}(s$$

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f \left(i\gamma^{\mu} D_{\mu} - m_f \right) q_f - \frac{1}{4} G^{(a)}_{\mu\nu} G^{(a) \mu\nu}$$

▶ at high energies: asymptotic freedom → perturbative QCD

At low energies: chiral symmetry

$$SU(3)_L \times SU(3)_R \to SU(3)_V$$

Chiral perturbation theory (χ PT)

- d.o.f. hadrons
- expansion in mass and momenta
- Unknown coupling constants (L_i) fitted to the data

Weinberg Gasser & Leutwyler

In practice rigorous implementation of these principles is **very hard**. However, for a given reaction it is possible to kinematically isolate regions where specific processes dominate.

Roy-Steiner: ππ, πK, πN Ananthanarayan (2001), Buttiker (2001), Ditsche (2012), et al.

$$A(s,t,u) = \sum_{J=0}^{\infty} (2J+1) P_J(\cos\theta) f_J(s)$$

$$A(s,t,u) = \sum_{J=0}^{J_{max}} (2J+1) P_J(\cos\theta) f_J(s)$$

$$A(s, t, u) = \sum_{J=0}^{J_{max}} (2J+1) P_J(\cos \theta) f_J(s)$$

 Reconstruction theorem: crossing symmetry, analyticity up to NNLO

$$A(s,t,u) = \sum_{J}^{J_{max}} \dots a_{J}(s) + \sum_{J}^{J_{max}} \dots a_{J}(t) + \sum_{J}^{J_{max}} \dots a_{J}(u)$$

ππ scattering Fuchs, Sazdjian, Stern (1993)

$$A(s, t, u) = \sum_{J=0}^{J_{max}} (2J+1) P_J(\cos \theta) f_J(s)$$

 Reconstruction theorem: crossing symmetry, analyticity up to NNLO

$$A(s,t,u) = \sum_{J}^{J_{max}} \dots a_{J}(s) + \sum_{J}^{J_{max}} \dots a_{J}(t) + \sum_{J}^{J_{max}} \dots a_{J}(u)$$

ππ scattering Fuchs, Sazdjian, Stern (1993)

Unitarity

$$A(s, t, u) = \sum_{J=0}^{J_{max}} (2J+1) P_J(\cos \theta) f_J(s)$$

 Reconstruction theorem: crossing symmetry, analyticity up to NNLO

$$A(s,t,u) = \sum_{J}^{J_{max}} \dots a_{J}(s) + \sum_{J}^{J_{max}} \dots a_{J}(t) + \sum_{J}^{J_{max}} \dots a_{J}(u)$$

ππ scattering Fuchs, Sazdjian, Stern (1993)

Unitarity

Khuri, Treiman (1960) Aitchison (1977)

Unitarity

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{-1}^{+1} \frac{d \cos \theta}{2} ... a_J(t) \right)$$

Unitarity

Pasquier inversion

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{-1}^{+1} \frac{d \cos \theta}{2} ... a_J(t) \right)$$

$$a_J(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} a_J(s)}{s' - s}$$

Unitarity

Pasquier inversion

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{t_-(s)}^{t_+(s)} dt \dots a_J(t) \right)$$

$$a_J(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} a_J(s)}{s' - s}$$

Pasquier inversion

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{t_-(s)}^{t_+(s)} dt \dots a_J(t) \right)$$

$$a_J(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} a_J(s)}{s' - s}$$

$$\int_{4\,m_{\pi}^{2}}^{\infty} \frac{ds'}{\pi} \int_{t_{-}(s)}^{t_{+}(s)} dt \dots \implies = \int_{\Gamma'} dt \int_{s_{-}(t)}^{s_{+}(t)} ds' \dots$$

Pasquier et al. Phys. Rev. 170, 1294 P. Guo, I.D., A. Szczepaniak EPJA 2015

$\eta \rightarrow \pi^+ \pi^- \pi^0 (WASA-at-COSY fit)$

$\eta \rightarrow \pi^+ \pi \pi^0 (KLOE-2 fit)$

Fit to KLOE-2					
$\chi^2/d.o.f.$	no 3b	with 3b			
(L,I)=(0,0), (1,1) 1 real par.	10,4	2,61			
(L,I)=(0,0),(1,1), (0,2) 2 real par.	1,21	1,29			

y

(preliminary)

$\eta \rightarrow \pi^+ \pi^- \pi^0 (KLOE-2 fit)$

Dalitz plot expansion:

$$|A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto 1 + a \, y + b \, y^2 + d \, x^2 + f \, y^3 + \dots$$
$$|A_{\eta \to 3\pi^0}|^2 \propto 1 + 2\alpha z + \dots$$

 $\eta \rightarrow 3\pi^0$

Dalitz plot expansion:

Prediction:

$$\begin{aligned} |A_{\eta \to \pi^+ \pi^- \pi^0}|^2 &\propto 1 + a \, y + b \, y^2 + d \, x^2 + f \, y^3 + \dots \\ |A_{\eta \to 3\pi^0}|^2 &\propto 1 + 2\alpha z + \dots \end{aligned}$$

 $\alpha = -0.025 \pm 0.004$ $\alpha^{\text{PDG}} = -0.0317 \pm 0.0016$

Matching to ChPT

We described Dalitz distribution normalised to unity at x=y=0

$$|A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto 1 + a \, y + b \, y^2 + d \, x^2 + f \, y^3 + \dots$$

$$\Gamma_{\eta \to \pi^+ \pi^- \pi^0}^{exp} \propto \int |A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto \frac{N^2}{Q^4} \qquad \frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$$

fix overall normalisation

Matching to ChPT

17

We described Dalitz distribution normalised to unity at x=y=0

$$|A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto 1 + a \, y + b \, y^2 + d \, x^2 + f \, y^3 + \dots$$

$$\Gamma_{\eta \to \pi^+ \pi^- \pi^0}^{exp} \propto \int |A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto \frac{N^2}{Q^4} \qquad \frac{1}{Q^2} = \frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}$$

fix overall normalisation

Matching to ChPT

$$A(s,t,u) = \sum_{J}^{J_{max}} \dots a_{J}(s) + \sum_{J}^{J_{max}} \dots a_{J}(t) + \sum_{J}^{J_{max}} \dots a_{J}(u)$$
$$A^{\chi PT}(s,t,u) = -\frac{1}{Q^{2}} \frac{m_{K}^{2}(m_{K}^{2} - m_{\pi}^{2})}{3\sqrt{3}m_{\pi}^{2}f_{\pi}^{2}} \left(\sum_{J}^{J_{max}} \dots a_{J}^{\chi PT}(s) + \dots\right)$$

Match individual (*I*, *J*) components of the full amplitude near Adler zero $s=4/3 m_{\pi}^2$

Q-value predictions

Quark mass double ratio:

1 _	$m_{d}^{2} -$	m_u^2
$\overline{Q^2}$ –	$m_{s}^{2} -$	\hat{m}^2

Lattice, FLAG, (Nf=2+1), 2014

	Q
Our result (fit to WASA@COSY)	21.4 ± 0.4
Our result (fit to KLOE-2)	21.7 ± 0.4
Our result (combined fit)	21.6 ± 0.4
Lattice, FLAG, 2016 $(N_f = 2 + 1)$	22.5 ± 0.8
Lattice, FLAG, 2016 $(N_f = 2 + 1 + 1)$	22.2 ± 1.6
NLO	20.1
NNLO	22.9
Dispersive (Kambor <i>et al.</i>)	22.4 ± 0.9
Dispersive (Kampf <i>et al.</i>)	23.1 ± 0.7
Dispersive (Colangelo et al., prelim.)	21.5 ± 0.5

Quark masses

 $\hat{m} = 3.42 \pm 0.09 \text{ MeV}$ $m_s = 93.8 \pm 0.24 \text{ MeV}$

$$m_u = 2.04 \pm 0.14 \text{ MeV}$$

 $m_d = 4.80 \pm 0.08 \text{ MeV}$

 ω/ϕ is spin 1 particle:

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{t_-(s)}^{t_+(s)} dt \dots a_J(t) \right)$$

$$a_J(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} a_J(s)}{s' - s}$$

 ω/ϕ is spin 1 particle:

Disc
$$a_J(s) = t_J^*(s) \rho(s) \left(a_J(s) + \int_{t_-(s)}^{t_+(s)} dt \dots a_J(t) \right)$$

$$a_J(s) = \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} a_J(s)}{s' - s}$$

inelastic contributions parametrize with a conformal mapping expansion

$$=\int_{4m_\pi^2}^{s_i}\ldots+\int_{s_i}^\infty\ldots$$

 $\sum_{i=1}^{N} C_{i} \, \omega(s)^{i}$

 $\overline{i=0}$

Coefficients C_i play the role of subtraction constants in conventional approach

 $\omega, \varphi \rightarrow 3\pi$

 $\omega \rightarrow 3\pi$: fit event by event g12 CLAS data in progress Carlos Salgado, Volker Crede, Chris Zeoli, etc.

$$φ→3π: $\chi^2/d.o.f. = 1.11$ (no 3b)
= 1.09 (with 3b)$$

Díscontínuíty relation: $\omega/\varphi \rightarrow \pi^{\circ}\gamma^{*}$

 $\omega \rightarrow \pi^{\nu}$

$$f_{V\pi}(s) = \int_{4m_{\pi}^2}^{s_i} \frac{ds'}{\pi} \frac{\text{Disc } f_{V\pi}(s')}{s' - s} + \sum_{k=0}^N b_k \left(\omega(s)\right)^k$$

 $\varphi \rightarrow \pi^{0}$

$$f_{V\pi}(s) = \int_{4m_{\pi}^2}^{s_i} \frac{ds'}{\pi} \frac{\text{Disc } f_{V\pi}(s')}{s' - s} + \sum_{k=0}^N b_k \, (\omega(s))^k$$

Summary and Outlook

- Fundamental principles (unitarity, analyticity and crossing symmetry) are very important: dispersion relations allow to take into account all rescattering effects
- ▶ 3b effects are not negligible
- ▶ Upcoming high statistic data from CLAS, WASA-at-COSY
- Extend to more complicated cases like: $\mathcal{J}^{\mathcal{P}}(arbitrary spin) \rightarrow 3\pi, \mathcal{N}^* \rightarrow \mathcal{N}\pi\pi, \mathcal{D} \rightarrow \mathcal{K}\pi\pi, \dots$

The codes are available for downloading as well as in an interactive form online http://www.indiana.edu/~jpac/

 $\eta \rightarrow \pi^+ \pi \pi^0$

 $|A_{\eta \to \pi^+ \pi^- \pi^0}|^2 \propto 1 + a \, y + b \, y^2 + d \, x^2 + f \, y^3 + \dots$

	a	b	d	f	g
KLOE-2 [16]	$-1.095\pm0.003^{+0.003}_{-0.002}$	$0.145 \pm 0.003 \pm 0.005$	$0.081 \pm 0.003 ^{+0.006}_{-0.005}$	$0.141 \pm 0.007 ^{+0.007}_{-0.008}$	$-0.044 \pm 0.009^{+0.012}_{-0.013}$
WASA-at-COSY [17]	-1.144 ± 0.018	$0.219 \pm 0.019 \pm 0.037$	$0.086 \pm 0.018 \pm 0.018$	0.115 ± 0.037	_
KLOE [16]	$-1.090\pm0.005^{+0.008}_{-0.019}$	$0.124 \pm 0.006 \pm 0.010$	$0 0.057 \pm 0.006^{+0.007}_{-0.010}$	$^{7}_{6}$ 0.14 ± 0.01 ± 0).02 –
CBarrel [14]	-1.22 ± 0.07	0.22 ± 0.11	$0.06\pm0.04({ m fixed})$	_	_
Layter et al. [49]	-1.080 ± 0.014	0.03 ± 0.03	0.05 ± 0.03	_	_
Gormley et al. [50]	-1.17 ± 0.02	0.21 ± 0.03	0.06 ± 0.04	_	_
Theory (combined fit)	-1.075 ± 0.028	0.155 ± 0.006	0.084 ± 0.002	0.101 ± 0.003	-0.074 ± 0.003
NLO [22]	-1.371	0.452	0.053	0.027	_
NNLO [23]	-1.271 ± 0.075	0.394 ± 0.102	0.055 ± 0.057	0.025 ± 0.160	_
Kambor et al. [24]	-1.16	0.240.26	0.090.10	_	_
NREFT [30]	-1.213 ± 0.014	0.308 ± 0.023	0.050 ± 0.003	0.083 ± 0.019	-0.039 ± 0.002

 $\omega/\phi \rightarrow 3\pi$

Typical Data analysis

3 BW + background term

 $\omega/\phi \rightarrow 3\pi$

Typical Data analysis

3 BW + background term

(Generalízed) isobar decomposition

Niecknig, Kubis Schneider (2012)

 ω/ϕ is spin 1 particle:

$$H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_1^{\nu} p_2^{\alpha} p_3^{\beta} F(s,t,u)$$
$$= \sum_{J=1,3,\dots}^{\infty} (2J+1) d_{\lambda 0}^J(\theta_s) f^J(s)$$

(Generalized) isobar decomposition

Niecknig, Kubis Schneider (2012)

 ω/ϕ is spin 1 particle:

$$H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_1^{\nu} p_2^{\alpha} p_3^{\beta} F(s,t,u)$$
$$= \sum_{J=1,3,\dots}^{\infty} (2J+1) d_{\lambda 0}^J(\theta_s) f^J(s)$$

p.w. expansion for $\mathcal{F}(s,t,u)$

$$F(s,t,u) = \sum_{J=1,3,\dots}^{\infty} (p(s) q(s))^{J-1} P'_J(z_s) F_J(s)$$

(Generalized) isobar decomposition

 ω/ϕ is spin 1 particle:

$$H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_{1}^{\nu} p_{2}^{\alpha} p_{3}^{\beta} F(s,t,u)$$

$$= \sum_{J=1,3,...}^{\infty} (2J+1) d_{\lambda 0}^{J}(\theta_{s}) f^{J}(s)$$

$$F(s,t,u) = \sum_{J=1,3,...}^{\infty} (p(s) q(s))^{J-1} P_{J}'(z_{s}) F_{J}(s)$$

Niecknig, Kubis

p.w. expansion for $\mathcal{F}(s,t,u)$

(Generalized) isobar decomposition

 ω/ϕ is spin 1 particle:

$$H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_{1}^{\nu} p_{2}^{\alpha} p_{3}^{\beta} F(s,t,u)$$

$$= \sum_{J=1,3,...}^{\infty} (2J+1) d_{\lambda0}^{J}(\theta_{s}) f^{J}(s)$$

$$F(s,t,u) = \sum_{J=1,3,...}^{\infty} (p(s) q(s))^{J-1} P_{J}'(z_{s}) F_{J}(s)$$

Niecknig, Kubis

p.w. expansion for $\mathcal{F}(s,t,u)$

Truncate the partial waves

(Generalízed) isobar decomposition

Niecknig, Kubis

 ω/ϕ is spin 1 particle:

$$H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_{1}^{\nu} p_{2}^{\alpha} p_{3}^{\beta} F(s,t,u)$$

$$= \sum_{J=1,3,...}^{\infty} (2J+1) d_{\lambda0}^{J}(\theta_{s}) f^{J}(s)$$

$$F(s,t,u) = \sum_{j=1,3,...}^{\infty} (p(s) q(s))^{J-1} P_{J}'(z_{s}) F_{J}(s)$$

p.w. expansion for $\mathcal{F}(s,t,u)$

$$F(s,t,u) = \sum_{J=1,3,\dots}^{\infty} (p(s) q(s))^{J-1} P'_J(z_s) F_J$$

Truncate the partial waves

So-called reconstruction theorem:

$$F(s,t,u) = \sum_{J=1,3,\dots}^{J_{max}} \dots F_J(s) + \sum_{J=1,3,\dots}^{J_{max}} \dots F_J(t) + \sum_{J=1,3,\dots}^{J_{max}} \dots F_J(u)$$

m scattering Fuchs, Sazdjian, Stern (1993)

(Generalízed) isobar decomposition

T_1 9

Niecknig, Kubis Schneider (2012)

remove kin. singular. !!!

p.w. expansion for $\mathcal{F}(s,t,u)$

 ω/ϕ is spin 1 particle:

$$F(s,t,u) = \sum_{J=1,3,...}^{\infty} (p(s) q(s))^{J-1} P'_J(z_s) F_J(s)$$

 $H = i \epsilon_{\mu\nu\alpha\beta} \epsilon^{\mu}(p,\lambda) p_1^{\nu} p_2^{\alpha} p_3^{\beta} F(s,t,u)$

 $= \sum_{k=1}^{\infty} (2J+1) d_{\lambda 0}^{J}(\theta_{s}) f^{J}(s)$

Truncate the partial waves

 $F(s,t,u) = \sum_{i=1}^{J_{max}} ...F_J(s) + \sum_{i=1}^{J_{max}} ...F_J(t) + \sum_{i=1}^{J_{max}} ...F_J(u)$

J = 1.3....

So-called reconstruction theorem:

ππ scattering Fuchs, Sazdjian, Stern (1993)

crossing, analyticity

J = 1.3...

J = 1.3...

Díspersíon relation

Integral equation

$$F(s) = \int_{4 m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } F(s')}{s' - s}$$

Disc $F(s) = t^*(s) \rho(s) \left(F(s) + \hat{F}(s) \right) + \text{inelastic } \theta(s > s_i)$

Díspersíon relation

Integral equation

$$F(s) = \int_{4 m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } F(s')}{s' - s}$$

Disc $F(s) = t^*(s) \rho(s) \left(F(s) + \hat{F}(s) \right) + \text{inelastic } \theta(s > s_i)$

For practical reason we decompose

$$F(s) = \Omega(s) G(s) \qquad \text{Omnes (1958)}$$

Disc $\Omega(s) = \rho(s) t^*(s) \Omega(s) + \text{inelastic } \theta(s > s_i)$

Dispersion relation

Integral equation

$$F(s) = \int_{4 m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } F(s')}{s' - s}$$

Disc $F(s) = t^*(s) \rho(s) \left(F(s) + \hat{F}(s) \right) + \text{inelastic } \theta(s > s_i)$

For practical reason we decompose

$$F(s) = \Omega(s) G(s)$$
 Omnes (1958)
Disc $\Omega(s) = \rho(s) t^*(s) \Omega(s) + \text{inelastic } \theta(s > s_i)$

Solve integral equation for *G*(*s*)

$$G(s) = \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } G(s')}{s' - s}$$

Disc $G(s) = \frac{\rho(s) t^*(s) \hat{F}(s)}{\Omega^*(s)} + \text{inelastic } \theta(s > s_i)$

Dispersion relation

Integral equation

$$F(s) = \int_{4 m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } F(s')}{s' - s}$$

Disc $F(s) = t^*(s) \rho(s) \left(F(s) + \hat{F}(s) \right) + \text{inelastic } \theta(s > s_i)$

For practical reason we decompose

$$F(s) = \Omega(s) G(s)$$
Disc $\Omega(s) = \rho(s) t^*(s) \Omega(s) + \text{inelastic } \theta(s > s_i)$

Solve integral equation for *G*(*s*)

$$\begin{split} G(s) &= \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s' - s} = \int_{4m_{\pi}^2}^{s_i} \dots + \int_{s_i}^{\infty} \dots \\ \operatorname{Disc} G(s) &= \frac{\rho(s) t^*(s) \hat{F}(s)}{\Omega^*(s)} + \operatorname{inelastic} \theta(s > s_i) \end{split}$$

Dispersion relation

Integral equation

$$F(s) = \int_{4 m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc } F(s')}{s' - s}$$

Disc $F(s) = t^*(s) \rho(s) \left(F(s) + \hat{F}(s) \right) + \text{inelastic } \theta(s > s_i)$

For practical reason we decompose

$$F(s) = \Omega(s) G(s)$$
 Omnes (1958)
Disc $\Omega(s) = \rho(s) t^*(s) \Omega(s) + \text{inelastic } \theta(s > s_i)$

parametrize with conformal mapping expansion

Solve integral equation for *G*(*s*)

$$G(s) = \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s' - s} = \int_{4m_{\pi}^2}^{s_i} \dots + \int_{s_i}^{\infty} \dots$$

$$\operatorname{Disc} G(s) = \frac{\rho(s) t^*(s) \hat{F}(s)}{\Omega^*(s)} + \operatorname{inelastic} \theta(s > s_i)$$

Díspersíon relatíon

Integral equation:
$$G(s) = \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s'-s} = \int_{4m_{\pi}^2}^{s_i} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s'-s} + \sum_{k=0}^{\infty} a_k \left(\omega(s)\right)^k$$

Díspersíon relation

Integral equation:
$$G(s) = \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s'-s} = \int_{4m_{\pi}^2}^{s_i} \frac{ds'}{\pi} \frac{\operatorname{Disc} G(s')}{s'-s} + \sum_{k=0}^{\infty} a_k \, (\omega(s))^k$$

w(s) is the **conformal map of** inelastic contributions

$$\omega(s) = \frac{\sqrt{s_i} - \sqrt{s_i - s}}{\sqrt{s_i} + \sqrt{s_i - s}}$$
$$s_i = 1 \,\text{GeV}^2$$

Yndurain (2002)

On going fitting of CLAS g12 data

- Data: g12 experiment
- Reaction: $\gamma p \to p \, \omega \to p \, \pi^+ \pi^- \pi^0$
- Incoming photon energies:
 - 1.1 3.8 GeV (Florida group: Volker Crede, Chris Zeoli, ...)
 - >3.6 GeV (JLab: Carlos Salgado, …)
- Files: data, reconstructed Monte Carlo, generated Monte Carlo
- 4-vector format: <pi+ 4-vec: Px, Py, Pz, E;>, ...
 incl: Q-value: likelihood for event being signal

 $\omega/\phi \rightarrow \pi^0 \gamma^*$

$$\langle \pi^0(p_0) \, l^+(p_+) \, l^-(p_-) \, | \, T \, | \, V(p_V, \lambda) \rangle =$$
$$(2\pi)^4 \, \delta(p_V - p_0 - p_+ - p_-) \, H_{V\pi}$$

$$H_{V\pi} = \epsilon^{\mu}(p_V, \lambda) f_{V\pi}(s) \epsilon_{\mu\nu\alpha\beta} p_0^{\nu} q^{\alpha}$$

$$\frac{ie^2}{s} \bar{u}(p_-, \lambda_-) \gamma^{\beta} \upsilon(p_+, \lambda_+), \qquad F_{V\pi}(s) = \frac{f_{V\pi}(s)}{f_{V\pi}(0)}$$

$$\frac{1}{\Gamma_{V\to\pi\gamma}} \frac{d\Gamma}{ds} = \frac{e^2}{12\pi^2} |F_{V\pi}(s)|^2 \sqrt{1 - \frac{4m_l^2}{s}} \left(1 + \frac{2m_l^2}{s}\right)$$
$$\frac{1}{s} \left[\left(1 + \frac{s}{M^2 - m^2}\right)^2 - \frac{4M^2s}{(M^2 - m^2)^2} \right]^{3/2}$$

0 0.2 0.4 0.6 Branching ratios

0.6

$$\mathcal{B}^{th}(\omega \to \pi^{0}e^{+}e^{-}) = 7.8 \cdot 10^{-4}$$
$$\mathcal{B}^{exp}(\omega \to \pi^{0}e^{+}e^{-}) = (7.7 \pm 0.6) \cdot 10^{-4}$$
$$\mathcal{B}^{th}(\omega \to \pi^{0}\mu^{+}\mu^{-}) = 0.96 \cdot 10^{-4}$$
$$\mathcal{B}^{exp}(\omega \to \pi^{0}\mu^{+}\mu^{-}) = (1.3 \pm 0.4) \cdot 10^{-4}$$
$$\mathcal{B}^{th}(\phi \to \pi^{0}e^{+}e^{-}) = 1.45 \cdot 10^{-5}$$

$$\mathcal{B}^{exp}(\phi \to \pi^0 e^+ e^-) = (1.12 \pm 0.28) \cdot 10^{-5}$$

Prediction $\mathcal{B}^{th}(\phi \to \pi^0 \mu^+ \mu^-) = 3.9 \cdot 10^{-6}$