



# Interference between $\varphi$ and $\Lambda(1520)$ production channels in $\gamma p \to K^+ K^- p$ reaction near Threshold

Sun Young Ryu (RCNP, Osaka University) for the LEPS Collaboration

### Outline

- **1** Photoproduction of  $\phi$  and  $\Lambda(1520)$  near threshold.
- 2 Interference effect between  $\varphi$  and  $\Lambda(1520)$  production channels.
- 3 Relative phase measurement.

Published in Phys. Rev. Lett. 116, 232001 (2016)





# $\boldsymbol{\varphi}$ Meson Photoproduction

The  $\phi$ -meson production has the unique feature within gluon dynamics of being a result of OZI suppression due to the dominant  $\overline{ss}$  structure .



# Bumps in $\boldsymbol{\varphi}$ Meson Photoproduction

The  $\sqrt{s} = 2.1$  GeV bump in  $\phi$  photoproduction has not yet been explained in detail <sup>1</sup>.



- Excitation of missing nucleon resonances <sup>2</sup>
- Hidden-strangeness pentaquark state <sup>3</sup>
- Rescattering processes <sup>4</sup>
- Interference effect
   between φ and Λ(1520)
   production channels

<sup>1</sup>T. Mibe *et al.* (LEPS), PRL 95, 182001 (2005); H. Seraydaryan *et al.* (CLAS) PRC 89, 182001 (2005); B. Dey *et al.* (CLAS) PRC 89, 055206 (2014)

<sup>2</sup>A. Kiswandhi *et al.*, PLB 691, 214 (2010)

<sup>3</sup>R. Aaji *et al.* (LHCb), PRL 115, 072001 (2015)

<sup>4</sup>S. Ozaki *et al.*, PRC 80, 035201 (2009); H-Y. Ryu *et al.*, PTEP 2014, 023D03 (2014)





# Bumps in $\varphi$ and $\Lambda(1520)$ Photoproduction



<sup>5</sup>H. Kohri et al. (LEPS), PRL 108, 092001 (2012)



Sun Young Ryu —  $\varphi\text{-}\Lambda(1520)$  Interference — Page 5 of 23



$$egin{array}{ll} rac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\!K^+K^-}\mathrm{d}m_{\!K^-p}} &\propto & |\mathcal{M}_{\varphi}+\mathcal{M}_{\Lambda(1520)}+\mathcal{M}_{\mathrm{nr}}|^2 \ &pprox & |\mathcal{M}_{\varphi}+\mathcal{M}_{\Lambda(1520)}|^2+|\mathcal{M}_{\mathrm{nr}}|^2, \end{array}$$

where  $\mathcal{M}_{\phi}$  and  $\mathcal{M}_{\Lambda(1520)}$  are the complex amplitudes for  $\phi$ and  $\Lambda(1520)$  production processes, respectively.  $\mathcal{M}_{nr}$  represents non-resonant  $K^+K^-p$  production.





# Interference between $\varphi(1020)$ and $\Lambda(1520)$

Differential cross sections for the  $\gamma p \to K^+ K^- p$  reaction via the  $\phi$  and  $\Lambda(1520)$  resonances:

$$\propto \left| \frac{\frac{\mathrm{d}^2 \sigma}{\mathrm{d} m_{K^+K^-} \mathrm{d} m_{K^-p}}}{\frac{m_{\varphi}^2 - m_{K^+K^-}^2 + i m_{\varphi} \Gamma_{\varphi}}{\mathcal{M}_{\varphi}}} + \underbrace{\frac{b \ e^{i \psi_b}}{m_{\Lambda^*}^2 - m_{K^-p}^2 + i m_{\Lambda^*} \Gamma_{\Lambda^*}}}_{\mathcal{M}_{\Lambda(1520)}} \right|^2,$$

where  $a = a(E_{\gamma})$  and  $b = b(E_{\gamma})$  denote the magnitudes of the Breit-Wigner amplitudes for  $\phi$  and  $\Lambda(1520)$ .





# Interference between $\mathcal{M}_{\varphi}$ and $\mathcal{M}_{\Lambda(1520)}$



 $^{6}\rm Y.$  Azimov, J. Phys. G 37, 023001(2010)  $^{7}\rm S.$  i. Nam et al. (to be published) for the theoretical calculation approach





# Interference between $\mathcal{M}_{\varphi}$ and $\mathcal{M}_{\Lambda(1520)}$

where  $\psi = |\psi_a - \psi_b|$  is the relative phase between a and B,  $m = m_{K^+K^-}$ .







Event selection with kinematic fits for  $\gamma p \to K^+ K^- p$ .





- Event selection with kinematic fits for  $\gamma p \rightarrow K^+ K^- p$ .
- Determinations of  $|\mathcal{M}_{\phi}|^2$ : *a* and  $|\mathcal{M}_{\Lambda(1520)}|^2$ :  $B(m_{K^+K^-})$  by excluding the possible interference region\* with the 0.1 *GeV* energy interval.





- Event selection with kinematic fits for  $\gamma p \rightarrow K^+ K^- p$ .
- Determinations of  $|\mathcal{M}_{\phi}|^2$ : *a* and  $|\mathcal{M}_{\Lambda(1520)}|^2$ :  $B(m_{K^+K^-})$  by excluding the possible interference region\* with the 0.1 *GeV* energy interval.

 $|M_{K^+K^-} - m_{\varphi}| < 4 \ \Gamma_{\varphi}, \qquad \Gamma_{\varphi} = 4.266 \ {
m MeV}$ 





- Event selection with kinematic fits for  $\gamma p \rightarrow K^+ K^- p$ .
- Determinations of  $|\mathcal{M}_{\phi}|^2$ : *a* and  $|\mathcal{M}_{\Lambda(1520)}|^2$ :  $B(m_{K^+K^-})$  by excluding the possible interference region\* with the 0.1 *GeV* energy interval.
  - $^{*} |M_{K^{+}K^{-}} m_{\varphi}| < 4 \; \Gamma_{\varphi}, \qquad \Gamma_{\varphi} \; = 4.266 \; {\sf MeV}$
  - $^{*}\mid M_{K^{-}p}-m_{\Lambda^{*}}\mid < 2\;\Gamma_{\Lambda^{*}},~~\Gamma_{\Lambda^{*}}=15.6\;{\sf MeV}$





- Event selection with kinematic fits for  $\gamma p \rightarrow K^+ K^- p$ .
- Determinations of  $|\mathcal{M}_{\phi}|^2$ : *a* and  $|\mathcal{M}_{\Lambda(1520)}|^2$ :  $B(m_{K^+K^-})$  by excluding the possible interference region\* with the 0.1 *GeV* energy interval.
  - $^{*} |M_{K^{+}K^{-}} m_{\varphi}| < 4 \; \Gamma_{\varphi}, \qquad \Gamma_{\varphi} \; = 4.266 \; {\sf MeV}$
  - $^{*}\mid M_{K^{-}p}-m_{\Lambda^{*}}\mid < 2\;\Gamma_{\Lambda^{*}}, ~~\Gamma_{\Lambda^{*}}=15.6\;{\sf MeV}$
- Relative phase measurement between  $\phi$  and  $\Lambda(1520)$  amplitudes in terms of energy in the interference region\*.





- Event selection with kinematic fits for  $\gamma p \rightarrow K^+ K^- p$ .
- Determinations of  $|\mathcal{M}_{\phi}|^2$ : *a* and  $|\mathcal{M}_{\Lambda(1520)}|^2$ :  $B(m_{K^+K^-})$  by excluding the possible interference region\* with the 0.1 *GeV* energy interval.
  - $^{*} |M_{K^+K^-} m_{\varphi}| < 4 \; \Gamma_{\varphi}, \qquad \Gamma_{\varphi} \; = 4.266 \; {\sf MeV}$
  - $^{*}\mid M_{K^{-}p}-m_{\Lambda^{*}}\mid < 2\;\Gamma_{\Lambda^{*}},~~\Gamma_{\Lambda^{*}}=15.6\;{\sf MeV}$
- Relative phase measurement between  $\phi$  and  $\Lambda(1520)$  amplitudes in terms of energy in the interference region\*.
- Measurement of Cross sections for φ and Λ(1520) photoproduction by excluding the possible interference region\*.





# **Experiment at LEPS/SPring-8**

核物理研究センク

Compton-Backscattered photon beam and a forward LEPS spectrometer at BL33LEP beam line, SPring-8.
 γp → K<sup>-</sup>K<sup>+</sup>p reactions at forward angles from the φ production threshold (1.573 GeV) to 2.4 GeV.







## **Particle Identification**



A typical mass resolution is 30 MeV for 1 GeV kaons.





# $K^+K^-p$ Events from Kinematic Fit $P(\chi^2) > 0.02$







# MC Simulation for $\gamma p ightarrow K^+ K^- p$ in all $E_\gamma$ Ranges



1  $\gamma p \rightarrow \phi p \rightarrow K^- K^+ p$  based on  $E_{\gamma}$ -dependent SDME <sup>2</sup>.

- 2  $\gamma p \rightarrow \Lambda(1520)K^+ \rightarrow K^- pK^+$  based on the decay angular distributions from LEPS results <sup>3</sup>.
- 3  $\gamma p \rightarrow K^+ K^- p$  (non-resonant S-wave production)
- 4  $\gamma p \rightarrow K(896)^0 \Sigma^+ \rightarrow K^+ \pi^- p \pi^0$  based on SDME results <sup>4</sup>.

<sup>2</sup>W.C. Chang *et al.* (LEPS) PRC 82, 015205 (2010)
 <sup>3</sup>J. Chen, Ph.D thesis (2009)
 <sup>4</sup>S.H. Hwang *et al.* (LEPS), PRL 108, 092001 (2012)





# 2-D Fits except the Interference Region



# 2-D Fit with MC Templates for $\gamma p ightarrow K^- K^+(p)$



- : The invariant mass spectra for  $K^+K^-$  (left) and  $K^-p$  (right) system
  - ---- : MC data for non-resonant  $K^+K^-p$  production





## Interference Region $K^+K^-(p)$







### Interference Yields ( $K^+K^-$ )

CNP

核物理研究センタ







# Fit results for the relative phase ( $K^+K^-$ )



Dashed lines are from theoretical estimates with  $\psi=\pi/2$  (S. i. Nam et al.)





# Integrated Yields and Phases ( $K^+K^-$ )







# Forward Differential Cross section for $\gamma p ightarrow \varphi p$





Sun Young Ryu —  $\phi$ - $\Lambda(1520)$  Interference — Page 21 of 23



# Differential Cross Sections for $\gamma p ightarrow K^+ \Lambda(1520)$

We also reconfirm the bump structure for  $\gamma p \to K^+ \Lambda(1520)$  at forward angles.





Sun Young Ryu —  $\phi$ - $\Lambda(1520)$  Interference — Page 22 of 23



The φ-Λ(1520) interference measurement is a good probe to study the origin of enhanced production cross sections for φ and Λ(1520) near √s=2.1GeV.





- The  $\phi$ - $\Lambda(1520)$  interference measurement is a good probe to study the origin of enhanced production cross sections for  $\phi$  and  $\Lambda(1520)$  near  $\sqrt{s}$ =2.1GeV.
- The relative phases suggest strong constructive interference for K<sup>+</sup>K<sup>-</sup> pairs observed at forward angles.





- The  $\phi$ - $\Lambda(1520)$  interference measurement is a good probe to study the origin of enhanced production cross sections for  $\phi$  and  $\Lambda(1520)$  near  $\sqrt{s}$ =2.1GeV.
- The relative phases suggest strong constructive interference for  $K^+K^-$  pairs observed at forward angles.
- We reconfirmed the bump structure and found that φ-Λ(1520) interference effect is not large enough to account for the bump structure.





- The  $\phi$ - $\Lambda(1520)$  interference measurement is a good probe to study the origin of enhanced production cross sections for  $\phi$  and  $\Lambda(1520)$  near  $\sqrt{s}$ =2.1GeV.
- The relative phases suggest strong constructive interference for K<sup>+</sup>K<sup>-</sup> pairs observed at forward angles.
- We reconfirmed the bump structure and found that φ-Λ(1520) interference effect is not large enough to account for the bump structure.
- The nature of the bump structure could originate from interesting exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange or rescattering processes via other hyperon states.



