Why electroweak penguin decays?

- In SM allows only the charged interactions to change flavour.
 - Other interactions are flavour conserving.
- One can escape this constrain and produce $b \rightarrow s$ and $b \rightarrow d$ at loop level.
 - This kind of processes are suppressed in SM \rightarrow Rare decays.
 - New Physics can enter in the loops.
Operator Product Expansion and Effective Field Theory

\[H_{eff} = -\frac{4G_f}{\sqrt{2}} V V^\dagger \sum_i \left[\begin{array}{c} C_i(\mu)O_i(\mu) + C'_i(\mu)O'_i(\mu) \\ \text{left-handed} \\ \text{right-handed} \end{array} \right], \]

where \(C_i \) are the Wilson coefficients and \(O_i \) are the corresponding effective operators.

- \(i=1,2 \) Tree
- \(i=3-6,8 \) Gluon penguin
- \(i=7 \) Photon penguin
- \(i=9,10 \) EW penguin
- \(i=S \) Scalar penguin
- \(i=P \) Pseudoscalar penguin
LHCb detector - tracking

- Excellent Impact Parameter (IP) resolution (20 µm).
 ⇒ Identify secondary vertices from heavy flavour decays
- Proper time resolution ∼ 40 fs.
 ⇒ Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.5 - 1.0\%$) and inv. mass resolution.
 ⇒ Low combinatorial background.
• Excellent Muon identification $\epsilon_{\mu \rightarrow \mu} \sim 97\%$, $\epsilon_{\pi \rightarrow \mu} \sim 1 - 3\%$
• Good $K - \pi$ separation via RICH detectors, $\epsilon_{K \rightarrow K} \sim 95\%$, $\epsilon_{\pi \rightarrow K} \sim 5\%$.
\Rightarrow Reject peaking backgrounds.
• High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76\text{GeV}$ at L0, $p_T > 1.0\text{GeV}$ at HLT1, $B \rightarrow J/\psi X$: Trigger $\sim 90\%$.
Recent measurements of $b \rightarrow s \ell\ell$

⇒ Branching fractions:

$B \rightarrow K \mu^- \mu^+$ \quad 1606.04731
$B_s^0 \rightarrow \phi \mu^- \mu^+$ \quad JHEP 09 (2015) 179
$B^\pm \rightarrow \pi^\pm \mu^- \mu^+$ \quad JHEP 12 (2012) 125
$\Lambda_b \rightarrow \Lambda \mu^- \mu^+$ \quad JHEP 06 (2015) 115
$B \rightarrow \mu^- \mu^+$ \quad Nature 15

⇒ CP asymmetry:

$B^\pm \rightarrow \pi^\pm \mu^- \mu^+$ \quad JHEP 10 (2015) 034

⇒ Isospin asymmetry:

$B \rightarrow K \mu^- \mu^+$ \quad JHEP 06 (2014) 133

⇒ Lepton Universality:

$B^\pm \rightarrow K^\pm \ell\bar{\ell}$ \quad PRL 113, (2014)

⇒ Angular:

$B^0 \rightarrow K^* \ell\bar{\ell}$ \quad JHEP 02 (2016) 104
$B^0, \pm \rightarrow K^{*,\pm} \ell\bar{\ell}$ \quad PRD 86 032012
$B^0_s \rightarrow \phi \mu\mu$ \quad JHEP 09 (2015) 179
$\Lambda_b \rightarrow \Lambda \mu^- \mu^+$ \quad JHEP 06 (2015) 115
Recent measurements of $b \rightarrow s \ell \ell$

\Rightarrow Branching fractions:

$B \rightarrow K \mu^-\mu^+$ \quad 1606.04731

$B_s^0 \rightarrow \phi\mu^-\mu^+$ \quad JHEP 09 (2015) 179

$B^\pm \rightarrow \pi^\pm\mu^-\mu^+$ \quad JHEP 12 (2012) 125

$\Lambda_b \rightarrow \Lambda\mu^-\mu^+$ \quad JHEP 06 (2015) 115

$B \rightarrow \mu^-\mu^+$ \quad Nature 15

\Rightarrow CP asymmetry:

$B^\pm \rightarrow \pi^\pm\mu^-\mu^+$ \quad JHEP 10 (2015) 034

\Rightarrow Lepton Universality:

$B^\pm \rightarrow K^{\pm}\ell\ell$ \quad PRL 113, (2014)

\Rightarrow Angular:

$B^0 \rightarrow K^*\ell\ell$ \quad PRD 86 032012

$B^{0,\pm} \rightarrow K^{*,\pm}\ell\ell$ \quad JHEP 09 (2015) 179

$B_s^0 \rightarrow \phi\ell\ell$ \quad JHEP 09 (2015) 179

$\Lambda_b \rightarrow \Lambda\mu^-\mu^+$ \quad JHEP 06 (2015) 115

\Rightarrow Isospin asymmetry:

$B \rightarrow K\mu^-\mu^+$ \quad JHEP 06 (2014) 133

\Rightarrow $> 2 \sigma$ deviations from SM
Observables in $B \rightarrow K^* \mu \mu$

The kinematics of $B^0 \rightarrow K^* \mu^- \mu^+$ decay is described by three angles θ_l, θ_k, ϕ and invariant mass of the dimuon system (q^2).

The angular distribution can be written as:

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d(\Gamma + \bar{\Gamma})}{d\cos\theta_l \, d\cos\theta_k \, d\phi} \bigg|_P = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_k
ight. $$

$$ + F_L \cos^2 \theta_k + \frac{1}{4} (1 - F_L) \sin^2 \theta_k \cos 2\theta_l $$

$$ - F_L \cos^2 \theta_k \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi $$

$$ + S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin \theta_l \cos \phi $$

$$ + \frac{4}{3} A_{FB} \sin^2 \theta_k \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi $$

$$ + S_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right].$$
The observables S_i are bilinear combinations of transversity amplitudes: $A_{\perp}^{L,R}$, $A_{\parallel}^{L,R}$, $A_0^{L,R}$.

So here is where the magic happens. At leading order the amplitudes can be written as:

$$
A_{\perp}^{L,R} = \sqrt{2N} m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} + C_9^{\text{eff}'} \mp (C_{10} + C_{10}') + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K*})
$$

$$
A_{\parallel}^{L,R} = -\sqrt{2N} m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} - C_9^{\text{eff}'} \mp (C_{10} - C_{10}') + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K*})
$$

$$
A_0^{L,R} = -\frac{N m_B (1 - \hat{s})^2}{2\hat{m}_{K*} \sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\text{eff}'} \mp (C_{10} - C_{10}') + 2\hat{m}_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\parallel} (E_{K*}),
$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel, \perp}$ are the soft form factors.
The observables S_i are bilinear combinations of transversity amplitudes: $A_{L,R}^L, A_{L,R}^R, A_{0}^L$.

So here is where the magic happens. At leading order the amplitudes can be written as:

$$A_{L,R}^L = \sqrt{2N} m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} + C_9^{\text{eff}'}) \mp (C_{10} + C'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}) \right] \xi_\perp (E_{K*})$$

$$A_{L,R}^R = -\sqrt{2N} m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_\perp (E_{K*})$$

$$A_{0}^L = -\frac{Nm_B (1 - \hat{s})^2}{2\hat{m}_{K*} \sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C'_{10}) + 2\hat{m}_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_\parallel (E_{K*}),$$

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the soft form factors.

Now we can construct observables that cancel the ξ soft form factors at leading order:

$$P_5' = \frac{J_5 + \bar{J}_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$
PID, kinematics and isolation variables used in a Boosted Decision Tree (BDT) to reject background.

- Reject the regions of J/ψ and $\psi(2S)$.
- Specific vetos for backgrounds: $\Lambda_b \rightarrow pK\mu\mu$, $B^0_s \rightarrow \phi\mu\mu$, etc.
- Using k-Fold technique and signal proxy $B \rightarrow J/\psi K^*$ for training the BDT.
- Improved selection allowed for finer binning than the $1fb^{-1}$ analysis.
$B^0 \rightarrow K^* \mu^- \mu^+$, Selection

• Signal modelled by a sum of two Crystal-Ball functions.
• Shape is defined using $B \rightarrow J/\psi K^*$ and corrected for q^2 dependency.
• Combinatorial background modelled by exponent.

• $K\pi$ system:
 ○ Beside the K^* resonance there might a tail from other higher mass states.
 ○ We modelled it in the analysis.
 ○ Reduced the systematic compared to previous analysis.

• In total we found 2398 ± 57 candidates in the $(0.1, 19) \text{ GeV}^2$ q^2 region.
• 624 ± 30 candidates in the theoretically the most interesting $(1.1 - 6.0) \text{ GeV}^2/c^4$ region.
Detector acceptance

- Detector distorts our angular distribution.
- We need to model this effect.
- 4D function is used:

\[\epsilon(\cos \theta_l, \cos \theta_k, \phi, q^2) = \sum_{ijkl} c_{ijkl} P_i(\cos \theta_l) P_j(\cos \theta_k) P_k(\phi) P_l(q^2), \]

where \(P_i \) is the Legendre polynomial of order \(i \).
- We use up to 4\(^{th}\), 5\(^{th}\), 6\(^{th}\), 5\(^{th}\) order for the \(\cos \theta_l, \cos \theta_k, \phi, q^2 \).
- 600 terms in total!
Method of moments

- Use orthogonality of spherical harmonics, \(f_j(\cos \theta_l, \cos \theta_k, \phi) \):

\[
\int f_i(\cos \theta_l, \cos \theta_k, \phi) \cdot f_j(\cos \theta_l, \cos \theta_k, \phi) = \delta_{ij}
\]

\[
M_i = \int \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d(\Gamma + \bar{\Gamma})}{d\cos \theta_l d\cos \theta_k d\phi} f_i(\cos \theta_l, \cos \theta_k, \phi)
\]

- Don’t have true angular distribution but we "sample" it with our data.
- Therefore: \(\int \to \sum \) and \(M_i \to \hat{M}_i \)
- Acceptance corrections is included by:

\[
\hat{M}_i = \frac{1}{\sum e w_e} \sum w_e f_i(\cos \theta_l, \cos \theta_k, \phi)
\]

- The weight \(w_e \) accounts for the efficiency from previous slide.
• We tested our unfolding procedure on $B \rightarrow J/\psi K^*$.
• The result is in perfect agreement with other experiments and our different analysis of this decay.
$B^0 \rightarrow K^* \mu \mu$ results

$LHCb$

- SM from ABSZ
- Likelihood fit
- Method of moments

$q^2 [\text{GeV}^2/c^4]$

$q^2 [\text{GeV}^2/c^4]$

$q^2 [\text{GeV}^2/c^4]$

$q^2 [\text{GeV}^2/c^4]$

Marcin Chrząszcz (Universität Zürich, IFJ PAN) Anomalies in electroweak penguins at LHCb
$B^0 \rightarrow K^{*\mu\mu}$ results

$q^2 [\text{GeV}^2/c^4]$ vs. A_{FB}

$LHCb$

- SM from ABSZ
- Likelihood fit
- Method of moments

$q^2 [\text{GeV}^2/c^4]$ vs. S_8

$q^2 [\text{GeV}^2/c^4]$ vs. S_7

$q^2 [\text{GeV}^2/c^4]$ vs. S_9
• Tension gets confirmed!
• The two bins deviate by 2.8 and 3.0 σ from SM prediction.
• Result compatible with previous result.
• Thanks to Method of Moments there was the possibility to measure a new observable S_{6c}.

• Measurement is consistent with the SM prediction.
BF measurements of $B \rightarrow K^{*0,\pm} \mu\mu$

- Despite large theoretical errors, the results are consistently smaller than SM prediction.
BF measurements of $B_S^0 \rightarrow \phi \mu \mu$

- Suppressed by $\frac{f_s}{f_d}$.
- Cleaner because of narrow ϕ resonance.
- 3.3σ deviation in SM in the $1 - 6 \text{GeV}^2/c^4$ bin.
- Angular part in agreement with SM (S_5 is not accessible).
Measurements of $\Lambda_b \rightarrow \Lambda \mu\mu$

- In total ~ 300 candidates in data set.
- Decay not present in the low q^2.
- For the bins in which we have $> 3 \sigma$ significance the forward backward asymmetry is measured for the hadronic and leptonic system.
Lepton universality test

• Challenging analysis due to bremsstrahlung.
• Migration of events modeled by MC.
• Correct for bremsstrahlung.
• Take double ratio with \(B^+ \rightarrow J/\psi K^+ \) to cancel systematics.
• In 3 fb\(^{-1}\), LHCb measures \(R_K = 0.745^{+0.090}_{-0.074} \) \((\text{stat.}) +0.036 \) \((\text{syst.})\).
• Consistent with SM at 2.6\(\sigma \).

\[
\frac{ \int_{q^2=6 \text{ GeV}^2/c^4} d[B^+ \rightarrow K^\pm \mu^\mp]/dq^2 dq^2 }{ \int_{q^2=1 \text{ GeV}^2/c^4} d[B^+ \rightarrow K^\pm e^\mp]/dq^2 dq^2 } = 1 \pm \mathcal{O}(10^{-3})
\]

\[R_K = \frac{ \int_{q^2=6 \text{ GeV}^2/c^4} dB^+ \rightarrow K^+ \mu^+ \mu^-/dq^2 dq^2 }{ \int_{q^2=1 \text{ GeV}^2/c^4} dB^+ \rightarrow K^+ e^+ e^-/dq^2 dq^2 } \]
Angular analysis of $B^0 \rightarrow K^*ee$

- With the full data set (3fb^{-1}) we performed angular analysis in $0.0004 < q^2 < 1 \text{GeV}^2/c^4$.
- Electrons channels are extremely challenging experimentally:
 - Bremsstrahlung.
 - Trigger efficiencies.
- Determine the angular observables: $F_L, A_T^{(2)}, A_T^{\text{Re}}, A_T^{\text{Im}}$.
- Results in full agreement with the SM.
- Similar strength on C_7 Wilson coefficient as from $b \rightarrow s\gamma$ decays.
Theory implications

- Took into the fit:
 - $\mathcal{B}(B \to X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$, Misiak et. al. PRL 114, 221801 (2015)
 - $\mathcal{B}(B \to \mu\mu)$, theory: Bobeth PRD 89, (2014), experiment: LHCb+CMS average (2015)
 - $\mathcal{B}(B \to X_s \mu\mu)$, Huber et al Nucl Phys B802, 2008
 - $\mathcal{B}(B \to K \mu\mu)$, Bouchard et al JHEP11 (2011) 122
 - $\mathcal{B}(s) \to K^*(\phi)\mu\mu$, Horgan et al PRL 112, (2014)
 - $B \to Kee, B \to K^*ee$ and R_k.
Theory implications

• A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto.
• The data can be explained by modifying the C_9 Wilson coefficient.
• Overall there is $> 4 \sigma$ discrepancy wrt. SM prediction.
If not NP?

- We are not there yet!
- There might be something not taken into account in the theory.
- Resonances \((J/\psi, \psi(2S)) \) tails can mimic NP effects.
- There might be some non factorizable QCD corrections.

"However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates" D. Straub, arXiv:1503.06199.
If not NP?

- We are not there yet!
- There might be something not taken into account in the theory.
- Resonances (J/ψ, $\psi(2S)$) tails can mimic NP effects.
- There might be some non factorizable QCD corrections.

”However, the central value of this effect would have to be significantly larger than expected on the basis of existing estimates” D. Straub, arXiv:1503.06199.
There is more!

- There is one other Lepton Universality Violation decay recently measured by LHCb.

 \[R(D^*) = \frac{\mathcal{B}(B \rightarrow D^*\tau\nu)}{\mathcal{B}(B \rightarrow D^*\mu\nu)} \]

- Clean SM prediction: \(R(D^*) = 0.252(3) \), PRD 85 094025 (2012)
- LHCb result: \(R(D^*) = 0.336 \pm 0.027 \pm 0.030 \)
- HFAG average: \(R(D^*) = 0.322 \pm 0.022 \)
- 4.0 \(\sigma \) discrepancy wrt. SM.
Conclusions

- Clear tensions wrt. SM predictions!
- Measurements cluster in the same direction.
- We are not opening the champagne yet!
- Still need improvement both on theory and experimental side.
- Time will tell if this is QCD+fluctuations or new Physics:

... when you have eliminated all the Standard Model explanations, whatever remains, however improbable, must be New Physics.

Prof. Joaquim Matias
Conclusions

• Clear tensions wrt. SM predictions!
• Measurements cluster in the same direction.
• We are not opening the champagne yet!
• Still need improvement both on theory and experimental side.
• Time will tell if this is QCD+fluctuations or new Physics:

 ‟... when you have eliminated all the Standard Model explanations, whatever remains, however improbable, must be New Physics.”

Prof. Joaquim Matias
Thank you for the attention!
Theory implications

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Best fit</th>
<th>1σ</th>
<th>3σ</th>
<th>Pull$_{SM}$</th>
<th>p-value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_7^{NP}</td>
<td>-0.02</td>
<td>$[-0.04, -0.00]$</td>
<td>$[-0.07, 0.04]$</td>
<td>1.1</td>
<td>16.0</td>
</tr>
<tr>
<td>C_9^{NP}</td>
<td>-1.11</td>
<td>$[-1.32, -0.89]$</td>
<td>$[-1.71, -0.40]$</td>
<td>4.5</td>
<td>62.0</td>
</tr>
<tr>
<td>C_{10}^{NP}</td>
<td>0.58</td>
<td>$[0.34, 0.84]$</td>
<td>$[-0.11, 1.41]$</td>
<td>2.5</td>
<td>25.0</td>
</tr>
<tr>
<td>$C_{7'}^{NP}$</td>
<td>0.02</td>
<td>$[-0.01, 0.04]$</td>
<td>$[-0.05, 0.09]$</td>
<td>0.7</td>
<td>15.0</td>
</tr>
<tr>
<td>$C_{9'}^{NP}$</td>
<td>0.49</td>
<td>$[0.21, 0.77]$</td>
<td>$[-0.33, 1.35]$</td>
<td>1.8</td>
<td>19.0</td>
</tr>
<tr>
<td>$C_{10'}^{NP}$</td>
<td>-0.27</td>
<td>$[-0.46, -0.08]$</td>
<td>$[-0.84, 0.28]$</td>
<td>1.4</td>
<td>17.0</td>
</tr>
<tr>
<td>$C_9^{NP} = C_{10}^{NP}$</td>
<td>-0.21</td>
<td>$[-0.40, 0.00]$</td>
<td>$[-0.74, 0.55]$</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>$C_9^{NP} = -C_{10}^{NP}$</td>
<td>-0.69</td>
<td>$[-0.88, -0.51]$</td>
<td>$[-1.27, -0.18]$</td>
<td>4.1</td>
<td>55.0</td>
</tr>
<tr>
<td>$C_{9'}^{NP} = C_{10'}^{NP}$</td>
<td>-0.09</td>
<td>$[-0.35, 0.17]$</td>
<td>$[-0.88, 0.66]$</td>
<td>0.3</td>
<td>14.0</td>
</tr>
<tr>
<td>$C_9^{NP} = -C_{10}^{NP}$</td>
<td>0.20</td>
<td>$[0.08, 0.32]$</td>
<td>$[-0.15, 0.56]$</td>
<td>1.7</td>
<td>19.0</td>
</tr>
<tr>
<td>$C_9^{NP} = -C_{9'}^{NP}$</td>
<td>-1.09</td>
<td>$[-1.28, -0.88]$</td>
<td>$[-1.62, -0.42]$</td>
<td>4.8</td>
<td>72.0</td>
</tr>
<tr>
<td>$C_9^{NP} = -C_{10}^{NP}$</td>
<td>-0.68</td>
<td>$[-0.49, -0.49]$</td>
<td>$[-1.36, -0.15]$</td>
<td>3.9</td>
<td>50.0</td>
</tr>
<tr>
<td>$C_9^{NP} = -C_{10}^{NP}$</td>
<td>-0.17</td>
<td>$[-0.29, -0.06]$</td>
<td>$[-0.54, 0.18]$</td>
<td>1.5</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Table 2: Best-fit points, confidence intervals, pulls for the SM hypothesis and p-values for different one-dimensional NP scenarios.
If not NP?

- How about our clean P_i observables?
- The QCD cancel as mentioned only at leading order.
- Comparison to normal observables with the optimised ones.
Transversity amplitudes

One can link the angular observables to transversity amplitudes

\[J_{1s} = \frac{(2 + \beta_{\ell}^2)}{4} \left[|A_L|^2 + |A_L|^2 + |A_R|^2 + |A_R|^2 \right] + \frac{4m^2_{\ell}}{q^2} \text{Re} \left(A_L A_R^* + A_L A_R^* \right), \]

\[J_{1c} = |A_0|^2 + |A_0|^2 + \frac{4m^2_{\ell}}{q^2} \left[|A_t|^2 + 2\text{Re}(A_0 A_0^*) \right] + \beta_{\ell}^2 |A_S|^2, \]

\[J_{2s} = \frac{\beta_{\ell}^2}{4} \left[|A_L|^2 + |A_L|^2 + |A_R|^2 + |A_R|^2 \right], \quad J_{2c} = -\beta_{\ell}^2 \left[|A_0|^2 + |A_0|^2 \right], \]

\[J_3 = \frac{1}{2} \beta_{\ell}^2 \left[|A_L|^2 - |A_L|^2 + |A_R|^2 - |A_R|^2 \right], \quad J_4 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\text{Re}(A_0 A_L^* + A_0 A_R^*) \right], \]

\[J_5 = \sqrt{2}\beta_{\ell} \left[\text{Re}(A_0 A_L^* - A_0 A_R^*) - \frac{m_{\ell}}{\sqrt{q^2}} \text{Re}(A_L A_S^* + A_R A_S^*) \right], \]

\[J_{6s} = 2\beta_{\ell} \left[\text{Re}(A_L A_L^* - A_R A_R^*) \right], \quad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^2}} \text{Re}(A_L A_S^* + A_R A_S^*), \]

\[J_7 = \sqrt{2}\beta_{\ell} \left[\text{Im}(A_0 A_L^* - A_0 A_R^*) + \frac{m_{\ell}}{\sqrt{q^2}} \text{Im}(A_L A_S^* - A_R A_S^*) \right], \]

\[J_8 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\text{Im}(A_0 A_L^* + A_0 A_R^*) \right], \quad J_9 = \beta_{\ell}^2 \left[\text{Im}(A_L A_L^* + A_R A_R^*) \right], \]
So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

\[A_{\perp}^{L,R} = \sqrt{2N m_B (1 - \hat{s})} \left[(C_9^{\text{eff}} + C_9^{\text{eff}'}) \mp (C_{10} + C_{10}') + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K^*}) \]

\[A_{\parallel}^{L,R} = -\sqrt{2N m_B (1 - \hat{s})} \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C_{10}') + \frac{2\hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K^*}) \]

\[A_0^{L,R} = -\frac{N m_B (1 - \hat{s})^2}{2\hat{m}_{K^*} \sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C_{10}') + 2\hat{m}_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\parallel} (E_{K^*}), \]

where \(\hat{s} = q^2/m_B^2 \), \(\hat{m}_i = m_i/m_B \). The \(\xi_{\parallel,\perp} \) are the form factors.
So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

\[
A_{\perp}^{L,R} = \sqrt{2} N m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} + C_9^{\text{eff}'}) \mp (C_{10} + C_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K^*})
\]

\[
P_5' = \frac{J_5 + \bar{J}_5}{2 \sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}
\]

\[
A_{\parallel}^{L,R} = -\sqrt{2} N m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\perp} (E_{K^*})
\]

\[
A_{0}^{L,R} = -\frac{N m_B (1 - \hat{s})^2}{2 \hat{m}_{K^*} \sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\text{eff}'}) \mp (C_{10} - C_{10}') + 2 \hat{m}_b (C_7^{\text{eff}} - C_7^{\text{eff}'}) \right] \xi_{\parallel} (E_{K^*}),
\]

where \(\hat{s} = q^2 / m_B^2 \), \(\hat{m}_i = m_i / m_B \). The \(\xi_{\parallel,\perp} \) are the form factors.

Now we can construct observables that cancel the \(\xi \) form factors at leading order:
\[B^0 \rightarrow K^* \mu^- \mu^+ \] kinematics

- The kinematics of \[B^0 \rightarrow K^* \mu^- \mu^+ \] decay is described by three angles \(\theta_l, \theta_k, \phi \) and invariant mass of the dimuon system \((q^2) \).

- \(\cos \theta_k \): the angle between the direction of the kaon in the \(K^* (\overline{K}^*) \) rest frame and the direction of the \(K^* (\overline{K}^*) \) in the \(B^0 (\overline{B}^0) \) rest frame.

- \(\cos \theta_l \): the angle between the direction of the \(\mu^- (\mu^+) \) in the dimuon rest frame and the direction of the dimuon in the \(B^0 (\overline{B}^0) \) rest frame.

- \(\phi \): the angle between the plane containing the \(\mu^- \) and \(\mu^+ \) and the plane containing the kaon and pion from the \(K^* \).
The kinematics of $B^0 \to K^* \mu^- \mu^+$ decay is described by three angles θ_l, θ_K, ϕ and invariant mass of the dimuon system (q^2).

$$
\frac{d^4 \Gamma}{dq^2 \, d\cos \theta_K \, d\cos \theta_l \, d\phi} = \frac{9}{32 \pi} \left[J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2 \theta_l \\
+ J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2 \phi + J_4 \sin 2 \theta_K \sin 2 \theta_l \cos \phi + J_5 \sin 2 \theta_K \sin \theta_l \cos \phi \\
+ (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l + J_7 \sin 2 \theta_K \sin \theta_l \sin \phi + J_8 \sin 2 \theta_K \sin 2 \theta_l \sin \phi \\
+ J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2 \phi \right],
$$

This is the most general expression of this kind of decay.

The \(CP \) averaged angular observables are defined:

$$
S_i = \frac{J_i + \bar{J}_i}{(d\Gamma + d\bar{\Gamma})/dq^2}
$$
The observables J_i are bilinear combinations of transversity amplitudes: $A_{\perp}^{L,R}$, $A_{\parallel}^{L,R}$, $A_0^{L,R}$.

So here is where the magic happens. At leading order the amplitudes can be written as:

\[
A_{\perp}^{L,R} = \sqrt{2} N m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} + C_9^{\prime \text{eff}}) \mp (C_{10} + C'_{10}) + \frac{2 \hat{m}_b}{\hat{s}} (C_7^{\text{eff}} + C_7^{\prime \text{eff}}) \right] \xi_{\perp} (E_{K^*})
\]

\[
A_{\parallel}^{L,R} = -\sqrt{2} N m_B (1 - \hat{s}) \left[(C_9^{\text{eff}} - C_9^{\prime \text{eff}}) \mp (C_{10} - C'_{10}) + \frac{2 \hat{m}_b}{\hat{s}} (C_7^{\text{eff}} - C_7^{\prime \text{eff}}) \right] \xi_{\perp} (E_{K^*})
\]

\[
A_0^{L,R} = -\frac{N m_B (1 - \hat{s})^2}{2 \hat{m}_{K^*} \sqrt{\hat{s}}} \left[(C_9^{\text{eff}} - C_9^{\prime \text{eff}}) \mp (C_{10} - C'_{10}) + 2 \hat{m}_b (C_7^{\text{eff}} - C_7^{\prime \text{eff}}) \right] \xi_{\parallel} (E_{K^*}),
\]

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the soft form factors.
The observables J_i are bilinear combinations of transversity amplitudes: $A^{L,R}_{\perp}$, $A^{L,R}_{\parallel}$, $A^{L,R}_0$.

So here is where the magic happens. At leading order the amplitudes can be written as:

\begin{align*}
A^{L,R}_{\perp} &= \sqrt{2} N m_B (1 - \hat{s}) \left[(C^\text{eff}_9 + C^\text{eff}'_9) \mp (C_{10} + C'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C^\text{eff}_7 + C^\text{eff}'_7) \right] \xi_{\perp} (E_K^*) \\
A^{L,R}_{\parallel} &= -\sqrt{2} N m_B (1 - \hat{s}) \left[(C^\text{eff}_9 - C^\text{eff}'_9) \mp (C_{10} - C'_{10}) + \frac{2\hat{m}_b}{\hat{s}} (C^\text{eff}_7 - C^\text{eff}'_7) \right] \xi_{\perp} (E_K^*) \\
A^{L,R}_0 &= -\frac{N m_B (1 - \hat{s})^2}{2\hat{m}_K^* \sqrt{\hat{s}}} \left[(C^\text{eff}_9 - C^\text{eff}'_9) \mp (C_{10} - C'_{10}) + 2\hat{m}_b(C^\text{eff}_7 - C^\text{eff}'_7) \right] \xi_{\parallel} (E_K^*),
\end{align*}

where $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$. The $\xi_{\parallel,\perp}$ are the soft form factors.

Now we can construct observables that cancel the ξ soft form factors at leading order:

\begin{align*}
P'_5 = \frac{J_5 + \bar{J}_5}{2\sqrt{-\left(J^c_2 + \bar{J}^c_2 \right) \left(J^s_2 + \bar{J}^s_2 \right)}}
\end{align*}
Symmetries in $B \rightarrow K^* \mu\mu$

⇒ We have 12 angular coefficients (S_i).
⇒ There exist 4 symmetry transformations that leave the angular distributions unchanged:

$$\begin{align*}
n_\parallel &= \begin{pmatrix} A^L_\parallel \cr A^R_\parallel \end{pmatrix}, \quad n_\perp &= \begin{pmatrix} A^L_\perp \cr -A^R_\perp \end{pmatrix}, \quad n_0 &= \begin{pmatrix} A^L_0 \cr A^R_0 \end{pmatrix}.
\end{align*}$$

$$n'_i = U n_i = \begin{bmatrix}
e^{i\phi_L} & 0 \\
0 & e^{-i\phi_R}
\end{bmatrix} \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
\cosh i\tilde{\theta} & -\sinh i\tilde{\theta} \\
-\sinh i\tilde{\theta} & \cosh i\tilde{\theta}
\end{bmatrix} n_i.$$

⇒ Using this symmetries one can show that there are 8 independent observables. The pdf can be written as:

$$\left. \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d(\Gamma + \bar{\Gamma})}{d\cos\theta_1 \ d\cos\theta_k \ d\phi} \right|_P = \left. \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_k
ight. \right.$$

$$\left. + F_L \cos^2 \theta_k + \frac{1}{4} (1 - F_L) \sin^2 \theta_k \cos 2\theta_l
ight. $$

$$\left. - F_L \cos^2 \theta_k \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi
ight. $$

$$\left. + S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin \theta_l \cos \phi
ight. $$

$$\left. + \frac{4}{3} A_{FB} \sin^2 \theta_k \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi
ight. $$

$$\left. + S_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right].$$