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Introduction ~exotic hadrons~

s Exotic hadrons

Hadrons which do not coincide with the predictions of the quark model.
complicated inn structure can be expected.

 tetra quark, penta quark
* hadron molecule -

~___ ltis important to reveal the internal structure of exotics.
e.g.; N(1405)
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1. Comnarison of the nredicted and observed snectrum of negative-naritv barvons. The shaded reci

N. Isgur, and G. Karl, Phys. Rev. D18, 4187 (1978)



Compositeness of bound state

sPrevious work

Introduced to study Composite Elementary
deuteron by Weinberg. ‘
S. Weinberg, Phys. Rev. 137, B672 (1965) '
s Condition
» weakly bound X=1 X =0
» stable state 7 =0 7 =1
* S-wave
s Output | 2o — R{ 2X O(Rtyp/R)}
* X ; weight of composite state (0 < X < 1) 1+ X X
* Z ; wave function renormalization (0 < Z < 1) typical Ier\wgth scale

* g ; scattering length

* B ; binding energy
pe 1
- /2uB
(#;reduced mass of scat. state)

' We can extract the information |
i of the internal structure |




Part |
~unstable states~
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Extension to the quasibound state.

s System

Two channel scattering
 scattering channel |p>
* decay channel |p/>

/P) can decay to |P').

Unstable quasibound state |QB)exists

near |p) threshold.
The interaction has a typical length scale typ .

s Effective field theory

To discuss the near-threshold physics,
we use following non-relativistic EFT.

Free field Hs. €igenstate

|p> scattering channel
——————————

|Bp) discrete channel

Interaction

p") ") p") B,
Hing = +

point interaction

Eigenstate

H = Hfree + Hint

H|QB) = Eqp|QB)
Egp = —B —il'/2 ; complex

We consider the compositeness of |p)channel ; X.



Extension to the quasibound state.

s Definition of compositeness

Bound state Quasibound state

To normalize unstable state,

Bound state |B) is we introduce Gamow state |QB).

normalize(;l with (B|B) =1 Normalization condition becomes
X E/ TP _(Blp)(p|B) (@B|@B) ={QB"|QB) = 1.
(2m) T. Berggren, Nucl. Phys. A 109 (1968)
3
— / (;l 1;’3 [(p| B)|? The expectation value of the any
70

operator becomes complex number.

Z = [(Bo| B)|?
k’ X+ Z=1 e
* )< X, Z <1 ( d3p L
X = [ 52 @Blp)wleB)
.y .y

The probabilistic interpretation The probabilistic interpretation
is guaranteed for X and Z. is not guaranteed! :




Extension to the quasibound state.

s Assuming |Egg|is small, we expand aqy with respect to 1/R.
Y. Kamiya and T. Hyodo, Phys. Rev. C. 93.035203, arXiv:1509.00146

aO:RLiXX | O( )+O(\%\3)} R¢1—21LEQB
_

‘original new N

f |Riyo/R| and |I/R|” are ,
* sufficiently smaller than 1, y LB
e ———

Rtyp

R

P

we can extract X from ap andEgp.

s Notice
* a9 ,Egp, X are all complex numbers,

then above relation is established among them.
* |f the the contribution of decaying mode is neglected,

the compositeness relation is same to the one for bound state.
 The same argument is valid for the case with Re Ej, > 0. 2



Interpretation of X

s Interpretation of the complex compositeness

* There is no common interpretation of the complex X.

bound state case
(1) close to bound state case Y — 08
Im - .
{X:O.8+O.1i { Z =0.2
2=02-0.L X Z probabilistic interpretation
P Re . .
small cancellation in X+Z| ° 1 is available

(2-a) When real part is not in [0,1]

X =19+0.2i
Z = —=0.9 — 0.2 X 7

Re

1

large cancellation in X+Z

(2-b) When imaginary part is large.

X =0.9+0.8i
Z =0.1-0.8i -

0

1 ..
When the cancelation is small,

10
// we can interpret the complex compositeness.



Interpretation of X

Our proposal

c.f. T. Berggren, Phys. Lett. B 33 (1979) 8

For probabilistic interpretation we define the following real quantities.
X ; probability to find the scattering state in physical state

7 ; probability to find the other states
U ; degree of uncertainty of the interpretation

conditions :

X+27Z=1

0< X, Z<1

* When the cancellation is O,
X=X,Z=2ZU=0 .

* U becomes large
when the cancellation becomes large.

If U is small, we interpret

~

— X as the probability.

o _1-|Z]+ X
2

5 _1-|X|+12]
2

U=Z|+ |X|-1
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Applications to hadrons

_ e R
s A(1405) (I =0 KN scattering) R .
T K
P @ KN
2
KN molecule? other components?
X =1 or X =0 - A excited states(uds)

- penta-quark state

Rtyp is estimated from » Ruy, _ . _21E
rho meson exchange int. ‘ R |~ 017 e
(Rigp ~ 0.25 fm) = 5
[ is estimated from , |i s -
difference of the threshold energy R~
w=r| g o () ro (4] o x=20 o X
\ 13

can be neglected



Applications to hadrons

s A(1405)inI =0 KN scattering , V103 Mev
We use Egp andaoin the following papers. =5 Ten
(1) Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 98 (2012) ®

(2) M. Mai and U. G. Meissner, Nucl. Phys. A 900, 51 (2013)
(3) Z. H. Guo and J. A. Oller, Phys. Rev. C 87,035202 (2013)
(4)M. Mai and U.-G. MeiBner, Eur. Phys. J. A 51, 30 (2015).

aQ
MeV (fm)

-4-18
-13-i20

2-110
- 3-i12

1.39-10.85
1.81-10.92
1.30-10.85
1.21-11.47
1.52-11.85

1.3+i0.1

0.6+i0.1 0.6
0.9-10.2 0.9
0.6+i0.0 0.6
1.0+10.5 0.8

« U is small enough. —> X can be considered as the probability.

e Xis close to 1.

0.0
0.1
0.0
0.6

A(1405)

. KN composite dominance | 14




Applications to hadrons

s ap(980) | fo(980) ( K K scattering) R

I=1) (=0 S

™ x
JPC _ gt T
KK

KK molecule 7 other components?

J. D. Weinstein and N. Isgur, PRD 41 (1990) e.g.

‘ X =1 or X=0 + tetra quarléfg?f;ce,epm 15 (1977)

-+ ¢4 meson state @

Ge)vo(al)] v x=0 v XU
\ 15

can be neglected




Applications to hadrons

c.f. : V.Baruet al. Phys. Lett. B 586, 53 (2004)

s a’O (980) In KK Scatterlng T. Sekihara and S. Kumano, Phys. Rev. D 92, 034010 (2015)
We determmeEQB and ao from (1) G.S.Adams et al. [CLEO Collaboration], Phys. Rev. D 84, 112009 (2011)
Flatte parameters which (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 681, 5 (2009)

. . (3) D. V. Bugg, Phys. Rev. D 78, 074023 (2008)
are obtained experimental analyses.
(4) S.Teige et al. [E852 Collaboration], Phys. Rev. D 59,012001 (1999)

ap ~

(fn) X X J

(1) 31-i70 -0.03-i0.53 0.2-i0.2 0.3 0.1
(2) 3-i25 0.17-i0.77 0.2-i0.2 0.2 0.1
©) 9-i36 0.05-i0.63 0.2-i0.2 0.2 0.1
(4) 15-i29 -0.13-i0.52 0.1-i0.4 0.1 0.1

« U is small enough. —> X can be considered as the probability.
X is close to O.

T ap(980) : small K K fraction 16




Applications to hadrons

. c.f. T. Sekihara and S. Kumano, Phys. Rev. D 92, no. 3, 034010 (2015)
> fO (980) |n KK SCatte I’I ng (1) T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 84, 052012 (2011)

. (2) F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 634, 148 (2006)
We determine Egp and ag from
(3) A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006)

Flatte pa ra mete 'S Wh ICh (4) M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607, 243 (2005)

are obtained experimenta| ana|y3is (5)J. M. Link et al. [FOCUS Collaboration], Phys. Lett. B 610, 225 (2005)
(6) M. N. Achasov et al., Phys. Lett. B 485, 349 (2000)

0.02-10.95
-6 -i110 0.84-10.85 0.3—10.1 0.3 0.0
-3 -128 0.64-10.83 0.4-10.2 0.4 0.1
10-i18 0.51-i1.58 0.7-10.3 0.6 0.1
-10-129 0.49-10.67 0.3-10.1 0.3 0.0
10-i7 0.52-i2.41 0.9-10.2 0.9 0.1

« U is small enough. —> X can be considered as the probability.
» Values of X are not consistent.

More precise analysis is needed. | 17
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CDD pole and weak-binding relation

s CDD (Castillejo Dalitz Dyson) pole( E.) and internal structure

CDD pole : f ( EC) — ()| L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956).
G.F. Chew and S. C. Frautschi, Phys. Rev. 124,264 (1961).

- represents the contribution from outside model

V. Baru et al, Eur. Phys. J. A44, 93 (2010), 1001.0369.
T. Hyodo, Phys. Rev. Lett. 111 (2013) 132002.
Z.-H. Guo and J. A. Oller, Phys. Rev. D93, 054014 (2016), 1601.00862.

s Condition of the weak-binding relation

In the derivation of the relation B
we assume that effective range expansion (ERE) ‘—
o @ >
work well at the pole of eigenstate. bound
1 1 \

_ Te 2 .
f(E) = " + ob —w (s-wave) convergence region of ERE

A

When the CDD pole lies near the threshold and ERE fails to describe the eigenstate, s ‘ b

the weak-binding relation is not available. o< >

CcDD
S. Weinberg, Phys. Rev. 137, B672 (1965)

If CDD pole lies near the threshold, we cannot use
the previous weak-binding relation to study internal structure. | 1°
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Derivation without convergence of ERE

For simplicity, we consider the stable bound state case. X = / d3 p\B

s Compositeness

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308. H’B EB ‘B> EB < O)

|B) : bound state

X = ;gQG/(EB) N

N

A
. 1
coupling constant between - 2 3 functi
pling G(F) 53 /0 D dpE — 720 + 0+ oop function
lp)and |B).

» The leading term of the G'(EB)is cutoff independent.

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308.

. typical length scale of int. (~ 1/A
G/(EB): H {1_|_O<Rtyp>} Rtyp ypical length scale of int. (~ 1/A)

47TEBR R

R = 1/\/—2,[LEB

21



Derivation without convergence of ERE

d3
= Compositeness X = / =|(p|B)|?

T. Sekihara, T. Hyodo, and D. Jido, PTEP 2015, 063D04 (2015), 1411.2308.

5 H‘B EB‘B EB<O)
X ZQM&G (EB)

|B): bound state

If we approximate ¢° with ERE ,
70

B R | 2 _ _ e
f(E) = [pcotd — ip) g =— Jlim p (E—E)f(E)
k» b 4+ 5}92 4+ ()(Reﬁp ) Res: range scale characterizing ERE
ag
g2:27r 1 X = ! PR [1+O(Rgp>]
2 R— 1. + RO((Reg/R)®) 1% +0 (%))

equivalent to the original Weinberg’s relation. \/‘

In this approximation, the CDD pole contribution is dropped out
from the weak-binding relation.

To include the CDD pole contribution,
— a better approximation for g° is needed .

22
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Extended relation with the CDD pole contribution

s To take account of the contribution of CDD pole E
COD T

e -
X = —QQG/(EB) bound

— —— ! _1
f(E) = [pcotd —ip) taking CDD pole contribution
K’ bo + b1p? 1

ez T ORRap”)  Pade approximant
1

Y. Kamiya, T. Hyodo, arXiv:1607.01899 [hep-ph].

o x = {1— 4R(C;O2T_ RY O((%)ﬂ—l (1+O(R§p))

Even when the ERE does not describe the bound state,
we can estimate the compositeness using experimental observables.

24



Extended relation with the CDD pole contribution

s Verification with model
We compare the effectiveness of the estimation

using the previous and extended weak-binding relation.
exact compositeness in this model

11 F
Xexact — _ng/(EB)
— | 1 — Xpads¢ }
original reilauony T/
ag 1 = Xexace 7
XR,CL() — 2R—a,0 o T :
extended relation I
0.8
¥ _ 4R(CLO . R)2 —1 1 — XR,CLO
Pade = - a(Q)Te 0.7 1 T Xexact
A ‘ E | | | |
E. Ep >0 -4 3 -2 1 0
RK—e g E.[MeV]
% # bound
CDD

The estimation of the compositeness is improved,
—— when the CDD pole lies near the threshold. #



Extended relation with the CDD pole contribution

s Verification with model
We compare the validity of the estimation

using the previous and extended weak-binding relation.
exact compositeness in this model

1.1
Xexact — _QZG/(EB)
e I——— | 1 — Xpads¢
original relation
ag 1 — Xexact ______ ‘
XR,CL() — R — - o T
extended relation P :
0.8
X L 1 4R(CL0 - R)2 -1 1 o XR,CLO
Pade — - a(Q)Te 0.7 1 T Xexact E
B
E. Ep >0 -4 3 -2 1 0
K g E.MeV]
4 # bound
CDD

The estimation of the compositeness is improved,
—— when the CDD pole lies near the threshold. *°



Conclusions

2 CO N C| usions Y. Kamiya and T. Hyodo, Phys. Rev. C. 93.035203, arXiv:1509.00146 [hep-ph].

P ; | Y. Kamiya, T. Hyodo, arXiv:1607.01899 [hep-ph].
ar

 We extend the weak-binding relation to quasi-bound states and we propose
an interpretation of complex X introducing real quantities X and U .

 We apply the method to hadrons and discuss the internal structures.

A(1405) : K N composite dominance
ap(980) : not KK dominance

Part |l

« With the Pade approximant, we take into account the contribution
of the near-threshold CDD pole and derive the extended weak-binding relation.

* We numerically examine the validity of the estimation

with the generalized weak-binding relation. .



