CHARM PHYSICS AT BESIII

$$\operatorname{YI}\xspace$ On behalf of the BESIII Collaboration

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon July 25-30, 2016 Kyoto, Japan

YI FANG (IHEP)

CHARM PHYSICS AT BESIII

・ロト ・回ト ・ヨト ・ヨト

BESIII EXPERIMENT

• BEPCII COLLIDER

symmetric e^+e^- collider, double-rings, 2.0 GeV $< E_{\rm cm} < 4.6~{\rm GeV}$

• BESIII DETECTOR

• DATA SETS

- **(**) D^0 and D^+ Physics: 2.93 fb⁻¹ at $E_{\rm cm} = 3.773$ GeV
- **2** D_s Physics: 482 pb⁻¹ at $E_{cm} = 4.009$ GeV

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Analysis Technique

 $e^+e^-
ightarrow c ar c
ightarrow ar D_{
m tag} \ D_{
m sig}$: Double-tag technique, Absolute measurement

• Reconstruct D_{sig} using the remaining tracks not associated to \overline{D}_{tag}

•
$$E_{D_{
m sig}}=E_{
m beam}$$
, $ec{p}_{D_{
m sig}}=-ec{p}_{ec{D}_{
m tag}}$

- no additional tracks/showers
- (semi-)leptonic decay: missing neutrino, $U_{
 m miss}\equiv E_{
 m miss}-|ec{p}_{
 m miss}|\sim 0$
- High tagging efficiency
- Extremely clean
- Systematic uncertainties associated to tag side are mostly canceled out

• **D**⁺ $\rightarrow \mu^+ \nu_{\mu}$ • **D**⁺ $\rightarrow \ell^+ \nu_{\ell}$

2 SEMILEPTONIC DECAYS • $D^0 \rightarrow K^- e^+ \nu_e, \ \pi^- e^+ \nu_e$ • $D^+ \rightarrow \bar{K}^0 e^+ \nu_e, \ \pi^0 e^+ \nu_e$

3 HADRONIC DECAYS • $D^+ \to K_S^0 \pi^+ \pi^0$ • $D^0 \to K_S^0 K^+ K^-$ • $D^+ \to \omega \pi^+$, $D^0 \to \omega \pi^0$

비로 《문》《문》《문》《집》

• D or D_s meson decays to a lepton and its neutrino via a virtual W boson

$$\Gamma[D_{(s)} \to \ell \nu] = \frac{G_F^2}{8\pi} m_\ell^2 M_{D_{(s)}} \left(1 - \frac{m_\ell^2}{M_{D_{(s)}}^2}\right)^2 f_{D_{(s)}}^2 |V_{cd(s)}|^2$$

- Measure decay constants f_{D^+} and $f_{D_s^+}$
 - To verify lattice QCD
 - Verified lattice QCD helps extract the CKM matrix elements $|V_{td}|$ and $|V_{ts}|$ from B- \bar{B} oscillations
- Extract the CKM matrix elements $|V_{cd}|$ and $|V_{cs}|$
 - To test the unitarity of the CKM matrix

イロト イヨト イヨト イヨト

$D^+ o \mu^+ u_\mu$

Phys. Rev. D 89, 051104(R) (2014)

YI FANG (IHEP)

Charm Physics at BESIII

MENU 2016 6 / 22

Comparions of $\mathcal{B}(D^+ o \mu^+ u_\mu)$ and f_{D^+}

- BESIII made the most precise measurements
- Precision of the LQCD calculations of f_{D^+} reach 0.5%, which is challenging the experiments

◆□> ◆□> ◆三> ◆三> 三三 のへの

 $D_s^+ \rightarrow \ell^+ \nu_\ell$

	Mode	N_{tag}
(a)	$\kappa_{S}^{0}\kappa^{-}$	1065 ± 39
(b)	$K^+K^-\pi^-$	5172 ± 114
(c)	$K^+K^-\pi^-\pi^0$	1900 ± 140
(d)	$K_{S}^{0}K^{+}\pi^{-}\pi^{-}$	576 \pm 48
(e)	$\pi^+\pi^-\pi^-$	1606 ± 139
(f)	$\pi - \eta$	814 ± 52
(g)	$\pi^{-}\pi^{0}\eta$	2172 ± 150
(h)	$\pi^-\eta'(\eta' \to \pi^+\pi^-\eta)$	440 \pm 39
(i)	$\pi^- \eta' (\eta' \to \gamma \gamma)$	1383 ± 143
	Sum	15127 ± 312

- SM constrained fits (fix $R \equiv \Gamma(D_s^+ \to \tau^+ \nu_{\tau}) / \Gamma(D_s^+ \to \mu^+ \nu_{\mu}) = 9.76)$ $\frac{D_s^+ \to | N_{sig} \qquad \mathcal{B}(\%)}{\mu^+ \nu_{\mu} \qquad 69.3 \pm 9.3 \qquad 0.495 \pm 0.067 \pm 0.026}$ $\tau^+ \nu_{\tau} \qquad 32.5 \pm 4.3 \qquad 4.83 \pm 0.65 \pm 0.26$
- Input τ_{D_s} , M_{D_s} , m_{μ} and $|V_{cs}| = |V_{ud}|$ from PDG $\hookrightarrow f_{D_s^+} = (241.0 \pm 16.3 \pm 6.6)$ MeV

Comparions of $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)$ and $f_{D_s^+}$

- Precision of the LQCD calculations of $f_{D_s^+}$ reach 0.5%, which is challenging the experiments
- Precise measurement of $f_{D_s^+}$ is hopefully to be done with 3 fb⁻¹ data taken at 4.18 GeV in the near future

◆□> ◆□> ◆三> ◆三> 三三 のへの

Semileptonic Decays

• Consider the semileptonic decay where the *D* meson decays to a pseudoscalar meson, a lepton and its neutrino via a virtual *W* boson

$$rac{d\Gamma(D o Pe
u)}{dq^2} = rac{G_F^2 |V_{cs(d)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

• Measure form factors $f_+^{D
ightarrow K}(q^2=0)$ and $f_+^{D
ightarrow \pi}(q^2=0)$

- To verify lattice QCD
- Extract the CKM matrix elements $|V_{cd}|$ and $|V_{cs}|$
 - To test the unitarity of the CKM matrix

<ロ> (日) (日) (日) (日) (日)

$D^0 ightarrow K^- e^+ u_e, \ \pi^- e^+ u_e,$

Phys. Rev. D 92, 072012 (2015)

YI FANG (IHEP)

Charm Physics at BESIII

MENU 2016 11 / 22

$D^0 ightarrow K^- e^+ u_e, \ \pi^- e^+ u_e$

• Extract $f_+^{D \to K(\pi)}(0)|V_{cs(d)}|$ and other form factor parameters from measured partial decay rates in q^2 bin

YI FANG (IHEP)

MENU 2016 12 / 22

Preliminary

 $D^+
ightarrow ar{K}^0 e^+
u_e, \ \pi^0 e^+
u_e,$

 $(170.31 \pm 0.34) \times 10^4$ single D⁻ tags

YI FANG (IHEP)

$D^+ ightarrow ar{K}^0 e^+ \overline{ u_e}, \ \pi^0 e^+ \overline{ u_e},$

Preliminary

• Extract $f_+^{D \to K(\pi)}(0)|V_{cs(d)}|$ and other form factor parameters from measured partial decay rates in q^2 bin

 $f_{\pm}^{D \to K}(0) |V_{cs}| = 0.7053 \pm 0.0040 \pm 0.0112$

 $f_{\pm}^{D \to \pi}(0) |V_{cd}| = 0.1400 \pm 0.0026 \pm 0.0007$

Form Factors $f_{+}^{D \to K(\pi)}(0)$

 To determine f^{D→K(π)}₊(0), use the measurements of f^{D→K(π)}₊(0)|V_{cs(d)}| and the PDG values for |V_{cs(d)}| (assuming CKM unitarity)

- BESIII made the best precise determinations of these two form factors
- The experimental accuracy is better than that of theoretical predictions

DETERMINATION OF $|V_{cs(d)}|$

• Comparisons of $f_{D_{\epsilon}^+}|V_{cs}|$ and $f_{D^+}|V_{cd}|$

• Using the average of LQCD results [Averaged by J. Rosner, S. Stone and R. Van de Water, see review in PDG2015]

 $\begin{array}{ll} f_{D_s^+} = 249.0 \pm 1.2 \ \text{MeV} & \Rightarrow & |V_{cs}| = 1.002 \pm 0.016_{\text{expt}} \pm 0.005_{\text{LQCD}} \\ f_{D^+} = 211.9 \pm 1.1 \ \text{MeV} & \Rightarrow & |V_{cd}| = 0.217 \pm 0.005_{\text{expt}} \pm 0.001_{\text{LQCD}} \end{array}$

DETERMINATION OF $|V_{cs(d)}|$

• Measurements of the normalization factors $f_{+}^{D \to K}(0)|V_{cs}|$ and $f_{+}^{D \to \pi}(0)|V_{cd}|$

• Using the LQCD calculations [PRD 82, 114506 (2010); 84, 114505 (2011)]

 $\begin{array}{ll} f_{+}^{D \to K}(0) = 0.747 \pm 0.019 & \Rightarrow & |V_{cs}| = 0.958 \pm 0.004_{\text{expt}} \pm 0.024_{\text{LQCD}} \\ f_{+}^{D \to \pi}(0) = 0.666 \pm 0.029 & \Rightarrow & |V_{cd}| = 0.214 \pm 0.002_{\text{expt}} \pm 0.009_{\text{LQCD}} \end{array}$

◆□> ◆□> ◆三> ◆三> 三三 のへの

Determination of $|V_{cs(d)}|$

• Unitarity checks

Use $|V_{cs(d)}|$ values extracted from leptonic and semileptonic decays

YI FANG (IHEP)

MENU 2016 18 / 2

◆□> ◆□> ◆目> ◆日> ◆日> ◆□> ◆□>

$D^+ ightarrow K_S^0 \pi^+ \pi^0$

• Distribution of (a) fitted p.d.f. and projections on (b) $m_{\pi^+\pi^0}^2$, (c) $m_{K_c^0\pi^0}^2$, (d) $m_{K_c^0\pi^+}^2$

• Partial BFs calculated by combining fitted fractions with PDG's ${\cal B}(D^+ o K^0_S\pi^+\pi^0)$

Mode	Partial branching fraction (%)
$D^+ \to K_S^0 \pi^+ \pi^0$ nonresonant	$0.32 \pm 0.05 \pm 0.25^{+0.28}_{-0.25}$
$D^+ \rightarrow \rho^+ K^0_S, \rho^+ \rightarrow \pi^+ \pi^0$	$5.83 \pm 0.16 \pm 0.30 \substack{+0.45 \\ -0.15}$
$D^+ \to \rho(1450)^+ K^0_S, \rho(1450)^+ \to \pi^+ \pi^0$	$0.15 \pm 0.02 \pm 0.09^{+0.07}_{-0.11}$
$D^+ \to \bar{K}^*(892)^0 \pi^+, \ \bar{K}^*(892)^0 \to K^0_S \pi^0$	$0.250 \pm 0.012 \pm 0.015^{+0.025}_{-0.024}$
$D^+ \to \bar{K}_0^* (1430)^0 \pi^+, \ \bar{K}_0^* (1430)^0 \to K_S^0 \pi^0$	$0.26 \pm 0.04 \pm 0.05 \pm 0.06$
$D^+ \to \bar{K}^* (1680)^0 \pi^+, \ \bar{K}^* (1680)^0 \to K_S^0 \pi^0$	$0.09 \pm 0.01 \pm 0.05^{+0.04}_{-0.08}$
$D^+ ightarrow ar{\kappa}^0 \pi^+, ar{\kappa}^0 ightarrow K^0_S \pi^0$	$0.54 \pm 0.09 \pm 0.28^{+0.36}_{-0.19}$
$NR+ar\kappa^0\pi^+$	$1.30\pm0.12\pm0.12^{+0.12}_{-0.30}$
$K_S^0 \pi^0$ S-wave	$1.21 \pm 0.10 \pm 0.16 ^{+0.19}_{-0.27}$

Partial BFs are measured with higher precision than previous measurements

YI FANG (IHEP)

$D^0 ightarrow K^0_S K^+ K^-$

• Preliminary result on the branching fraction measurement via single tag

 $\mathcal{B}(D^0 \to K^0_S K^+ K^-) = (4.622 \pm 0.045 \pm 0.181) \times 10^{-3}$

- Relative uncertainty: 4.0%
- Good agreement with PDG2015 value:

$$\mathcal{B}(D^0 \to K^0_S K^+ K^-) = (4.51 \pm 0.34)\%$$

 \hookrightarrow 7.5% relative uncertainty

YI FANG (IHEP)

・ロト ・回ト ・ヨト・

• The first observation of the singly Cabibbo-Suppressed decay $D^+
ightarrow \omega \pi^+$

Branching fraction	This work	Previous measurements
${\cal B}(D^+ o \omega \pi^+) \; (10^{-4})$	$2.79 \pm 0.57 \pm 0.16$	< 3.4 at 90% C.L.
$\mathcal{B}(D^0 ightarrow \omega \pi^0) \; (10^{-4})$	$1.17 \pm 0.34 \pm 0.07$	<2.6 at 90% C.L.
${\cal B}(D^+ o\eta\pi^+)~(10^{-3})$	$3.07 \pm 0.22 \pm 0.13$	3.53 ± 0.21
$\mathcal{B}(D^0 ightarrow \eta \pi^0) \; (10^{-3})$	$0.65 \pm 0.09 \pm 0.04$	0.68 ± 0.07

 $D^+ \rightarrow \omega \pi^+, \ D^0 \rightarrow \omega \pi^0$

SUMMARY

- With 2.93 fb⁻¹ data taken at 3.773 GeV and 482 pb⁻¹ data taken at 4.009 GeV, BESIII provided many important results on charm physics:
 - Decay constants and form factors in (semi-)leptonic $D_{(s)}$ decays
 - CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$
 - Improved measurements of D hadronic decays
- Topics not shown today:
 - $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$
 - $D^+ \rightarrow \omega e^+ \nu_e$
 - $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
 - Measurement of the $D
 ightarrow K^- \pi^+$ strong phase difference
 - y_{CP} in $D^0 \overline{D}^0$ oscillation
 - $D_s^+ \to \eta' X$ and $\eta' \rho^+$
 - • • • •
- Prospect:
 - 3 fb⁻¹ data at 4.18 GeV is almost in hand, more results on D_s^+ physics are expected in the near future

Thank you!

イロト イヨト イヨト イヨト

FORM FACTOR PARAMETERIZATIONS

Single Pole

$$f_+(q^2) = \frac{f_+(0)}{1-q^2/M_{\rm pole}^2}$$

Modified Pole (BK)

$$f_+(q^2) = rac{f_+(0)}{\left(1-q^2/M_{
m pole}^2
ight)\left(1-lpha q^2/M_{
m pole}^2
ight)}$$

ISGW2

$$f_+(q^2) = f_+(q_{\max}^2 \left(1 + rac{r_{\mathrm{ISGW2}}^2}{12}(q_{\max}^2 - q^2)\right)^{-2}$$

Series Expansion

$$f_+(q^2) = rac{1}{P(q^2)\phi(q^2,t_0)}\sum_{k=0}^\infty a_k(t_0)\left[z(q^2,t_0)
ight]^k$$

三日 のへの

・ロト ・回ト ・ヨト ・ヨト