The $B_c \rightarrow J/\psi K D$ weak decay and its relation with the $D_{s0}^*(2317)$ resonance
I. Introduction. A few words about the $D_{s0}^*(2317)$

II. Statement of the problem: weak decay of a heavy hadron

III. Theoretical approach: hadronization and rescattering

IV. Results and observable predictions

V. Summary

Based on:

"$D_{s0}^*(2317)^+ \text{ in the decay of } B_c \text{ into } J/\psi DK$",

I. Introduction. A few words about the $D_{s0}^*(2317)$
1. It was discovered in 2003, by the BABAR Collaboration and later confirmed by CLEO, BELLE and FOCUS.
1. It was discovered in 2003, by the BABAR Collaboration and later confirmed by CLEO, BELLE and FOCUS.

2. Several theoretical interpretations: $c\bar{s}$ state, molecular meson-meson, $K - D$-mixing, two meson and four quark state, four quark state.
1. It was discovered in 2003, by the BABAR Collaboration and later confirmed by CLEO, BELLE and FOCUS.

2. Several theoretical interpretations: $c\bar{s}$ state, molecular meson-meson, $K-D$-mixing, two meson and four quark state, four quark state

3. Lattice simulations have found the $D^{*}_{s0}(2317)$ state with a KD component of $\approx 70\%$
I. Introduction. A few words about the $D_{s0}^*(2317)$

- An experimental test of the molecular nature: $B_s \rightarrow \pi^+ \bar{D}^0 K^-$, $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \bar{D}^0 D^0 K^+$
I. Introduction. A few words about the $D_{s0}^*(2317)$

An experimental test of the molecular nature: $B_s \rightarrow \pi^+ \bar{D}^0 K^-$, $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \bar{D}^0 D^0 K^+$
I. Introduction. A few words about the $D_{s0}^*(2317)$

An experimental test of the molecular nature: $B_s \rightarrow \pi^+ \bar{D}^0 K^-$, $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \bar{D}^0 D^0 K^+$

I. Introduction. A few words about the $D_{s0}^*(2317)$

- An experimental test of the molecular nature: $B_s \rightarrow \pi^+ \bar{D}^0 K^-$, $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \bar{D}^0 D^0 K^+$

$P(KD) = 70^{+5}_{-6}^{+4}_{-8}\%$
An experimental test of the molecular nature: $B_s \rightarrow \pi^+ \bar{D}^0 K^-$, $B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \bar{D}^0 D^0 K^+$

$$P(KD) = 70^{+5}_{-6} \pm 4\%$$

Another work to propose: $\bar{B}_s^0 \rightarrow D_s^- (KD)^+$

II. Statement of the problem: weak decay of a heavy hadron
1. The dominant weak mechanism

\[H_W = \frac{G_F}{\sqrt{2}} V_{Qq_1} V_{q_1q_2} \bar{q}_1 \gamma_\mu (1 - \gamma_5) Q \bar{q}_2 \gamma_\mu (1 - \gamma_5) q_1 \]
1. The dominant weak mechanism
\[H_W = \frac{G_F}{\sqrt{2}} V_{Qq_1} V_{q_1q_2} \bar{q}_1 \gamma_\mu (1 - \gamma_5) Q \bar{q}_2 \gamma^\mu (1 - \gamma_5) q_1 \]

2. We look to a small energy range: smooth energy dependence
1. The dominant weak mechanism

\[H_W = \frac{G_F}{\sqrt{2}} V_{Qq_1} V_{q_1 q_2} \bar{q}_1 \gamma^\mu (1 - \gamma_5) Q \bar{q}_2 \gamma^\mu (1 - \gamma_5) q_1 \]

2. We look to a small energy range: smooth energy dependence

3. Amplitude considered as constant: \(V_\rho \)
1. Weak decay of a heavy hadron. 2.
I. Weak decay of a heavy hadron. 2.

\[V_p + V'_p \]

Global constant factor
II. Theoretical approach: hadronization and rescattering.
II. Theoretical approach: hadronization. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$
- Projection into meson-meson states is done with the M matrix
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum

- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$

- Projection into meson-meson states is done with the M matrix

$$M = \begin{pmatrix} u\bar{u} \\ \end{pmatrix}$$
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$
- Projection into meson-meson states is done with the M matrix

$$M = \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} & u\bar{c} \end{pmatrix}$$
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$
- Projection into meson-meson states is done with the M matrix

\[
M = \begin{pmatrix}
u\bar{u} & u\bar{d} & u\bar{s} & u\bar{c} \\
u\bar{d} & d\bar{d} & d\bar{s} & d\bar{c} \\
u\bar{s} & d\bar{u} & d\bar{d} & d\bar{s} \\
u\bar{c} & d\bar{u} & d\bar{s} & d\bar{c}
\end{pmatrix}
\]
II. Theoretical approach: *hadronization*. 1.

- An extra $q\bar{q}$ pair with the quantum numbers of the vacuum
- $c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})$
- Projection into meson-meson states is done with the M matrix

$$M = \begin{pmatrix}
u\bar{u} & u\bar{d} & u\bar{s} & u\bar{c} \\
d\bar{u} & d\bar{d} & d\bar{s} & d\bar{c} \\
s\bar{u} & s\bar{d} & s\bar{s} & s\bar{c} \\
c\bar{u} & c\bar{d} & c\bar{s} & c\bar{c}
\end{pmatrix} = \begin{pmatrix} u \\
d \\
s \\
c \end{pmatrix} \cdot \begin{pmatrix} \bar{u} \\
\bar{d} \\
\bar{s} \\
\bar{c} \end{pmatrix}$$
II. Theoretical approach: *hadronization*. 2.

\[
M^2 = \begin{pmatrix} u \\ d \\ s \\ c \end{pmatrix} \cdot \begin{pmatrix} \bar{u} & \bar{d} & \bar{s} & \bar{c} \end{pmatrix} \cdot \begin{pmatrix} u \\ d \\ s \\ c \end{pmatrix} \cdot (\bar{u} \quad \bar{d} \quad \bar{s} \quad \bar{c})
\]

\[
= M (u\bar{u} + d\bar{d} + s\bar{s} + c\bar{c}) \rightarrow (M^2)_{4,3} = c\bar{s}(u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})
\]
II. Theoretical approach: *hadronization*. 2.

\[
\phi = \begin{pmatrix}
\frac{\eta}{\sqrt{3}} + \frac{\pi^0}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} \\
\pi^- \\
K^- \\
D^0 \\
\frac{\eta}{\sqrt{3}} - \frac{\pi^0}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} \\
\overline{K}^0 \\
D_+ \\
\sqrt{\frac{2}{3}} \eta' + \frac{\eta}{\sqrt{3}} \eta_c \\
D_s^+ \\
\eta_c
\end{pmatrix}
\]

\[
(M^2)_{4,3} = c\bar{s} (u\bar{u} + d\bar{d} + c\bar{c} + s\bar{s})
\]

\[
(\phi^2)_{4,3} = D^0 K^+ + D^+ K^0 - \frac{1}{\sqrt{3}} \eta D_s^+ + \sqrt{\frac{2}{3}} D_s^+ \eta' + \eta_c D_s^+ \equiv \sum_j P_j P'_j h_j
\]
II. Theoretical approach: hadronization. 3.

1. \(t_{\text{Decay}} \left(B_c \to J/\Psi P_j P'_j \right) = V_p \times h_j \)
II. Theoretical approach: *hadronization*. 3.

1. $t_{\text{Decay}} \left(B_c \rightarrow J/\Psi P_j P_j' \right) = V_p \times h_j$

2. The J/Ψ meson interaction will be neglected
1. $t_{\text{Decay}} \left(B_c \rightarrow J/\Psi P_j P'_j \right) = V_p \times h_j$

2. The J/Ψ meson interaction will be neglected

3. There are more contributions to the final $J/\Psi P_j P'_j$ state

\[t_{\text{Decay}}(B_c \rightarrow J/\psi K^0 D^+) = V_p \times \left(h_{K^0 D^+} + \sum_j G_j t_{j, K^0 D^+ h_j} \right) \]
The $t_{i,j}$ is the pseudoscalar interaction vertex relating channels i and j.

\mathbf{G} is a diagonal matrix whose elements are the loop functions of the two mesons P_i, P'_i, in each channel $G_{i,i}(s) = \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(P-q)^2 - m_i^2 + i\epsilon + (m'_i)^2 + i\epsilon}$.

$V_{i,j}$ is the kernel potential, L.O. S-wave amplitudes (GAMERMANN, OSET, STROTTMAN, VICENTE PHYSICAL REVIEW D 76, 074016 (2007)),
The $t_{i,j}$ is the pseudoscalar interaction vertex relating channels i and j.

It is obtained solving the scattering in coupled channels $i, j = K^+D^0, K^0D^+, \eta D_s$:

$$t_{i,j} = (1 - V \cdot G)_{i,k}^{-1} \cdot V_{k,j}$$
II. Theoretical approach: rescattering. 5.

- The $t_{i,j}$ is the pseudoscalar interaction vertex relating channels i and j.

- It is obtained solving the scattering in coupled channels $i, j = K^+ D^0, K^0 D^+, \eta D_s$:

$$t_{i,j} = \frac{1}{(1 - V \cdot G)_{i,k}} \cdot V_{k,j}$$

- G is a diagonal matrix whose elements are the loop functions of the two mesons P_i, P'_i, in each channel

$$G_{i,i}(s = P^2) = \int_{\mathbb{R}^4} \frac{d^4 q}{(2\pi)^4} \frac{1}{(P - q)^2 - m_i^2 + i\epsilon} \frac{1}{q^2 - (m'_i)^2 + i\epsilon}$$
II. Theoretical approach: *rescattering*. 5.

- The $t_{i,j}$ is the pseudoscalar interaction vertex relating channels i and j.

- It is obtained solving the scattering in coupled channels $i, j = K^+D^0, K^0D^+, \eta D_s$:

$$ t_{i,j} = (1 - V \cdot G)^{-1}_{i,k} \cdot V_{k,j} $$

- G is a diagonal matrix whose elements are the loop functions of the two mesons P_i, P'_i, in each channel

$$ G_{i,i}(s = P^2) = \int_{\mathbb{R}^4} \frac{d^4q}{(2\pi)^4} \frac{1}{(P - q)^2 - m_i^2 + i\epsilon} \frac{1}{q^2 - (m'_i)^2 + i\epsilon} $$

- $V_{i,j}$ is the kernel potential, L.O. S-wave amplitudes (Gamermann, Oset, Strottman, Vicente Vacas. Physical Review D 76, 074016 (2007)),

χ–heavy-meson lagrangian

$$ V_{i,j}(s) = \frac{1}{f_\pi} \left(A_{i,j} (m, m') + B_{i,j} (m, m') s + C_{i,j} (m, m') \frac{1}{s} \right) $$
II. Theoretical approach: rescattering. 5.

- Unitarization of the amplitudes

\[t_{i,j} = (1 - V \cdot G)^{-1}_{i,k} \cdot V_{k,j} \]
II. Theoretical approach: *rescattering*. 5.

- **Unitarization of the amplitudes**

\[t_{i,j} = (1 - V \cdot G)^{-1}_{i,k} \cdot V_{k,j} \]

- **Resummation**

\[t_{i,j} = (1 + V \cdot G + V \cdot G \cdot V \cdot G + \ldots)_{i,k} \cdot V_{k,j} \]
III. Results and predictions for observables.
Fit the scattering free parameter α in order to have the $D_{s0}^*(2317)$ as a bound state. A pole in the t matrix,

$$t_{i,j} \approx \frac{g_i g_j}{s - (M_{D_{s0}^*(2317)})^2}$$
Fit the scattering free parameter α in order to have the $D_{s0}^*(2317)$ as a bound state. A pole in the t matrix,

$$t_{i,j} \approx \frac{g_i g_j}{s-(M_{D_{s0}^*(2317)})^2}$$

The differential decay width $d\Gamma(B_c \to J/\psi K D)/dM_{\text{inv}},$

$$B_c \to J/\psi K^0 D^+$$
$$0^- \to 1^- 0^+$$

$$V_p = \sqrt{3} A p_{J/\psi} \cos \theta$$
Fit the scattering free parameter α in order to have the $D_{s0}^*(2317)$ as a bound state. A pole in the t matrix,
$$t_{i,j} \approx \frac{g_i g_j}{s-(M_{D_{s0}^*(2317)})^2}$$

The differential decay width $d\Gamma(B_c \rightarrow J/\Psi K D)/dM_{\text{inv}}$,
$$B_c \rightarrow J/\Psi K^0 D^+$$
$$0^- \rightarrow 1^- 0^+$$
$$V_p = \sqrt{3} A p_{J/\Psi} \cos \theta$$

$$\frac{d\Gamma}{dM_{\text{inv}}} = A^2 \frac{p_{J/\Psi}^3 p_{DK}}{(2\pi)^3 4m_{B_c}^2} \left| \frac{t_{\text{Decay}}(B_c \rightarrow J/\Psi D^+ K^0)}{V_p} \right|^2$$
III. Results and predictions for observables. 1.
III. Results and predictions for observables. 2.

- $\Gamma(B_c \rightarrow J/\Psi D^{*}_{s0}(2317))$ Coalescence production of the $D^{*}_{s0}(2317)^+$:

 \[t(B_c \rightarrow J/\Psi R) = V_p \sum_j h_j G_j g_j |_{E=M_R} \]

Diagram:

- B_c to V_p to $D^{*}_{s0}(2317)$ to J/Ψ
III. Results and predictions for observables. 2.

- $\Gamma(B_c \rightarrow J/\Psi D^{*}_{s0}(2317))$ Coalescence production of the $D^{*}_{s0}(2317)^{+}$: $t(B_c \rightarrow J/\Psi R) = V_P \sum_j h_j G_j g_j \Big|_{E=M_R}$

- $\frac{d\tilde{\Gamma}(B_c \rightarrow J/\Psi KD)}{dM_{inv}} = \frac{d\Gamma(B_c \rightarrow J/\Psi KD)}{dM_{inv}} \frac{1}{p_{J/\Psi}^3 p_{DK}} \ldots$
III. Results and predictions for observables. 2.

- $\Gamma(B_c \to J/\Psi D_{s0}^*(2317))$ Coalescence production of the $D_{s0}^*(2317)^+$:

 \[t(B_c \to J/\Psi R) = V_p \sum_j h_j G_j g_j \bigg|_{E=M_R} \]

\[J/\Psi \]

\[D_{s0}^*(2317) \]

\[B_c \]

\[V_p \]

\[P_j \]

\[P_{j}' \]

\[d\tilde{\Gamma}(B_c \to J/\Psi KD) \]

\[= \frac{d\Gamma(B_c \to J/\Psi KD)}{dM_{inv}} \frac{1}{p_{J/\Psi}^3 p_{DK}} \times \left[\frac{1}{\Gamma(B_c \to J/\Psi R)} \right] \ldots \]
III. Results and predictions for observables. 2.

\[\Gamma(B_c \to J/\Psi D_{s0}^*(2317)) \]

Coalescence production of the \(D_{s0}^*(2317)^+ \):

\[t(B_c \to J/\Psi R) = V_p \sum_j h_j G_j g_j \bigg|_{E=M_R} \]

\[\Gamma(B_c \to J/\Psi KD) \]

\[\frac{d\Gamma(B_c \to J/\Psi KD)}{dM_{inv}} \bigg|_{\rho_{j/\psi} \rho_{DK}} \times \left[\frac{1}{\Gamma(B_c \to J/\Psi R)} \right] \times \rho_{j/\psi}^3 \bigg|_{E=M_R} M_R^2 \]

dimensionless quantity
III. Results and predictions for observables. 2.

\[\Gamma(B_c \to J/\psi D_{s0}^*(2317)) \] Coalescence production of the \(D_{s0}^*(2317)^+ \):

\[t(B_c \to J/\psi R) = V_p \sum_j h_j G_j g_j \bigg|_{E=M_R} \]

\[\frac{d\Gamma(B_c \to J/\psi KD)}{dM_{\text{inv}}} = \frac{d\Gamma(B_c \to J/\psi KD)}{dM_{\text{inv}}} \frac{1}{p_{J/\psi}^3 p_{DK}} \times \left[\frac{1}{\Gamma(B_c \to J/\psi R)} \right] \times p_{J/\psi}^3 \bigg|_{E=M_R} M_R^2 \]

\[= \frac{M_R^2}{4\pi^2} \left| \frac{h_{D+K^0} + \sum_i h_i G_i t_i, D+K^0}{\sum_i h_i G_i g_i} \right|^2 \bigg|_{\text{pole}}, \]

dimensionless quantity
\[\Gamma(B_c \to J/\psi D_{s0}^*(2317))\] Coalescence production of the \(D_{s0}^*(2317)^+\): \(t(B_c \to J/\psi R) = V_p \sum_j h_j G_j g_j \bigg|_{E=M_R}\)

\[\frac{d\tilde{\Gamma}(B_c \to J/\psi KD)}{dM_{inv}} = \left[M^2 \frac{p^3_{J/\psi}}{R \Gamma(B_c \to J/\psi R)}\bigg|_{E=M_R}\right] \times \frac{1}{p^3_{J/\psi} p_{DK}} \frac{d\Gamma(B_c \to J/\psi KD)}{dM_{inv}}\]
III. Results and predictions for observables. 3.

Possible $q\bar{q}$ component to the $D_{s0}^*(2317)$ generation (A. Martínez Torres, E. Oset, S. Prelovsek and A. Ramos, JHEP 1505 (2015) 153):

- The amount of KD from the lattice data

\[
P(KD) = (72 \pm 14)\% \leftrightarrow P(KD) = -\sum_{i=K^+D^0, K^0D^+} g_i^2 \frac{\partial G_i}{\partial s} \bigg|_{\text{pole}}
\]
Possible $q\bar{q}$ component to the $D_{s0}^*(2317)$ generation (A. Martínez Torres, E. Oset, S. Prelovsek and A. Ramos, JHEP 1505 (2015) 153):

- The amount of KD from the lattice data

\[
P(KD) = (72 \pm 14)\% \leftrightarrow P(KD) = -\sum_{i=K^+D^0,K^0D^+} g_i^2 \frac{\partial G_i}{\partial s} \bigg|_{\text{pole}}
\]

- We add a Castillejo-Dalitz-Dyson pole to the potential

\[
V_{i,j} \rightarrow V_{i,j} + \delta V, \quad \delta V = \frac{\gamma}{M_{\text{inv}} - M_{q\bar{q}}}
\]
Possible $q\bar{q}$ component to the $D_{s0}^*(2317)$ generation (A. Martínez Torres, E. Oset, S. Prelovsek and A. Ramos, JHEP 1505 (2015) 153):

- The amount of KD from the lattice data

$$P(KD) = (72 \pm 14)\% \leftrightarrow P(KD) = - \sum_{i=K^+D^0,K^0D^+} g_i^2 \frac{\partial G_i}{\partial s} \bigg|_{\text{pole}}$$

- We add a Castillejo-Dalitz-Dyson pole to the potential

$$V_{i,j} \rightarrow V_{i,j} + \delta V, \quad \delta V = \frac{\gamma}{M_{\text{inv}} - M_{q\bar{q}}}$$

- We consider direct coupling to this component in the B_c decay
We consider direct coupling to this component in the B_c decay.
We consider direct coupling to this component in the B_c decay

![Diagram](image)

For different cases $P(KD) = 58, 72, 86\%$, we consider a $q\bar{q}$ coupling to the resonance such that $\Rightarrow 0, 21, 44\%$ of increase in $\Gamma(B_c \rightarrow J/\psi D_{s0}^*(2317))$
III. Results and predictions for observables. 3.

(a) $P(KD) = 0.58$

(b) $P(KD) = 0.72$

(c) $P(KD) = 0.86$
V. Summary
The enhancement of events seen close to the KD threshold in B decays can be an experimental test of the molecular nature of the $D_{s0}^*(2317)$.
The enhancement of events seen close to the KD threshold in B decays can be an experimental test of the molecular nature of the $D_{s0}^*(2317)$.

We have proposed an unmeasured weak decay process where, with the molecular KD hypothesis, this feature is also observed and due to the generation of the $D_{s0}^*(2317)$.

V. Summary.
Thank you for your attention

[hep-ph/0005253].

