

The Neutral Pion Form Factor at the NA62 Experiment

Enrico Gamberini

University of Ferrara and INFN-Ferrara - Italy

On behalf of the NA62 collaboration

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

July 25-30 2016, Kyoto, Japan

Kaon Decay-in-Flight Experiments at CERN

- Fixed target experiments at CERN SPS
- Kaon decay-in-flight
- Neutral Kaons: NA31, NA48, NA48/1
- Charged Kaons: NA48/2, NA62

Experiments' history			
1980s	NA31 (<i>K_L/K_S</i>)	First evidence of direct CPV	
1997-2001	NA48 (<i>K_L/K_S</i>)	$Re(\varepsilon'/\varepsilon)$ Discovery of direct CPV	
2002	NA48/1 (K _S , hyperons)	Rare decay studies	
2003-2004	NA48/2 (K ⁺ /K ⁻)	Direct CPV, Rare K^+/K^- decays	
2007-2008	NA62 (<i>K</i> ⁺ / <i>K</i> ⁻)	Lepton universality: $K_{e2}/K_{\mu 2}$	
2015	NA62 (K ⁺)	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$, Rare K^+ decays and more	

NA62: currently ~200 partecipants, 29 institutions from 13 countries

NA62 A

The NA62 Experiment

NA62

- > Main goal: measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$
- Rare decay studies
- LFV, LNV decays
- > Search for heavy ν , axions, ...

Early stage (2007): measurement of the ratio $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$, lepton universality

- improved NA48/2 layout
- physics runs: 2007-2008
- $> R_K$ measurement accuracy: 0.4% (Phys. Lett. B 719, 2013, 326)

Primary beam from CERN SPS:

- 400 GeV/c protons on beryllium target
 Secondary beam:
- Unseparated charged beam ($\pi/p/K$)
- $^\circ~\sim 6\%$ K component

See E. Minucci's talk on NA62 During today's "Fundamental symmetries" parallel session

π^0 Transition Form Factor in NA62

- NA62: a Kaon Factory but also a Pion Factory
 - Neutral Pions: lightest mesons → study of low-energy properties of the strong interaction
 - Production of a large sample of π^0 mesons from the main K^\pm decay modes
- The π^0 Transition Form Factor (TFF) slope parameter enters the differential decay width of the Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^- (\pi_D^0)$
- The NA62 method: measurement of the π^0 TFF slope parameter from the analysis of the decay $K^{\pm} \rightarrow \pi^{\pm}\pi^0$ ($K_{2\pi}$) followed by π_D^0
 - $\,\,\circ\,\,$ Clean sample of tagged π^0
 - Stringent kinematic constraints
 - Effective background suppression
 - Preliminary results from the 2007 data
- NA62 data (2007) $\sim 2 \times 10^{10} K^{\pm}$ decays in the fiducial region
 - Data taking optimized for the R_K measurement (identification of e^{\pm} from $K^{\pm} \rightarrow e^{\pm}\nu$)
 - Factor 10 reduction of beam intensity wrt NA48/2:
 - Efficient minimum bias trigger configuration
 - Minimum accidental background

The NA62 layout in 2007

Principal sub-detectors:

- Magnetic spectrometer (4 DCHs)
 - 4 views/DCH \rightarrow high efficiency
 - $\sigma_p/p = 0.48\% \oplus 0.009\% \cdot p \,[\text{GeV/c}]$
- Scintillator hodoscope (HOD)
 - Low-level trigger, time measurement (150 ps)
- Liquid Krypton EM calorimeter (LKr)
 - High granularity, quasi-homogeneus
 - $\sigma_E/E = (3.2/\sqrt{E} \oplus 9/E + 0.42)\%$ [E in GeV]
 - $\sigma_x = \sigma_y = (4.2/\sqrt{E} \oplus 0.6) \text{ mm} (1.5 \text{ mm} @ 10 \text{ GeV})$

26/7/2016

Beam layout:

- Alternate K^{\pm} beam (NA48/2)
- $p_K = (74 \pm 2) \text{ GeV/c}$
- Main trigger: electron from K_{e2} \rightarrow Efficient for π_D^0 decays

The Dalitz Decay $\pi^0 \rightarrow e^+ e^- \gamma$

Kinematic variables x and y:

 $x = \left(\frac{M_{e^+e^-}}{m_{\pi^0}}\right)^2 = \frac{(p_{e^+} + p_{e^-})^2}{m_{\pi^0}^2}, \ y = \frac{2p_{\pi^0}(p_{e^+} + p_{e^-})}{m_{\pi^0}^2(1-x)}$

□ Differential decay width: $[r^2 = (2m_e/m_{\pi^0})^2 \equiv x_{min}]$

Transition Form Factor

F(x)

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dxdy} = \frac{\alpha}{4\pi}\frac{(1-x)^{3}}{x}\left(1+y^{2}+\frac{r^{2}}{x}\right)\left(1+\delta(x,y)\right)|F(x)|^{2}$$
Radiative corrections

Form factor varies slowly:

Approximation $F(x) \approx 1 + ax$, a: TFF slope parameter

\Box The π^0 Transition Form Factor (TFF)

 The comparison of TFF slope prediction with model independent measurements is a remarkable test of the theoretical models

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dx} = \frac{2\alpha}{4\pi}\frac{(1-x)^{3}}{x}\left(1+\frac{r^{2}}{2x}\right)\sqrt{1-\frac{r^{2}}{x}}\left(1+\delta(x,y)\right)(1+ax)^{2}$$

- π^0 TFF slope from the Vector Meson Dominance (VMD) model: $a \approx 0.03$
- The π⁰ TFF theoretical models enter the prediction of important observable quantities:
 - The rate of the rare decay $\pi^0
 ightarrow e^+e^-$
 - The hadronic light-by-light scattering contribution to (g - 2)_µ
- See recent overview and references in:
 A. Nyffeler, arXiv:1602.03398 [hep-ph]

The Radiative Corrections

 $\frac{d^{2}\Gamma}{dxdy} = \left(\frac{d^{2}\Gamma}{dxdy}\right)_{0} \left(1 + \delta(x, y)\right)$

Bremsstrahlung contribution

- Essential corrections for the π^0 TFF measurement
- $\,\circ\,$ Radiative corrections implemented in the MC π_D^0 event generator, including internal bremsstrahlung photons
- Exploit the Mikaelian and Smith approach revisited by T. Husek et al.

Same magnitude as TFF

1-loop 1-photon irreducible contributions

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$; $\pi^{0} \rightarrow \gamma e^{+}e^{-}$ selection

NA62

The NA62 2007 data sample:

- $\circ~\sim 2 \times 10^{10}$ kaon decays in the fiducial region
- ~ 5 × 10 ⁹ boosted π^0 mesons from $K_{2\pi}$
 - $\,\circ\,\,$ Mean free path of π^0 : few μm (negligible)
- $ightarrow \sim 6 imes 10^{\ 7} \ \pi_D^0$ decays produced

Main selection criteria:

- 3-track vertex topology
- One photon candidate in LKr e.m. calorimeter
- Reconstructed $e^+e^-\gamma$ invariant mass: 115 MeV/c² < $M_{ee\gamma}$ < 145 MeV/c²
- Reconstructed $\pi^{\pm}\pi^{0}$ invariant mass: 465 MeV < $M_{2\pi}$ < 510 MeV/c²
- Reconstructed Dalitz x variable: 0.01 < x < 1
- Missing momentum consistent with the beam size
- $ightarrow 1.05 imes 10^6$ fully reconstructed π_D^0 events

Small contribution from $K_{\mu3D}$

Enrico Gamberini, MENU 2016

26/7/2016

π_D^0 Decay Sample

 1.05×10^6 fully reconstructed π_D^0 events with x > 0.01

The TFF slope is obtained by adjusting the simulation to the data x spectrum: best data/MC agreement from a χ^2 test

26/7/2016

The π^0 TFF: preliminary results - I

Central PDG value

Fit procedure:

- Split reconstructed Dalitz x data into equal population bins
- Compare data with simulation (constant TFF slope: $a_{sim} = 0.032$)
 - → To obtain simulated x distributions, corresponding to different a slope: re-weight simulated events with weight $w(a) = (1 + ax_{true})^2/(1 + a_{sim}x_{true})^2$
- Minimize $\chi^2(a)$ Data/Simulation comparison wrt a

Fit result:

- $a = (3.70 \pm 0.53_{stat}) \times 10^{-2}$
- $(\chi^2/\text{n.d.f.} = 52.5/49, \text{p-value: } 0.34)$

Fit result illustration:

- Data/Simulation (a = 0) ratio
- 20 equal population bins
- Points are in bin barycenters

26/7/2016

Enrico Gamberini, MENU 2016

The π^0 TFF: preliminary results - II

Systematic Uncertainties

Source	$\delta a(imes 10^2)$
Statistical – Data	0.49
Statistical – MC	0.20
Beam momentum spectrum simulation	0.30
Spectrometer momentum scale	0.15
Spectrometer resolution	0.05
LKr non-linearity and energy scale	0.04
Particle mis-ID	0.08
Accidental background	0.08
Neglected π_D^0 sources in MC	0.01

NA62 preliminary result on π^0 TFF slope parameter:

 $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2} = (3.70 \pm 0.64) \times 10^{-2}$

(new preliminary results)

Enrico Gamberini, MENU 2016

Comparison with world data

- The NA62 results are compared with those of previous experiments using π_D^0 decays to extract the TFF slope from the reconstructed x spectrum.
- Only the measurements which account for radiative corrections are listed.
- The NA62 preliminary measurement, based on 2007 data, is the most precise up-to-date in the time-like region of momentum transfer
- $^\circ~$ The positive slope value is directly observed with $>6\sigma$ for the first time

Enrico Gamberini, MENU 2016

π^0 TFF Slope Measurements from π^0_D

And theory expectations

• Chiral perturbation theory:

K. Kampf et al., EPJ C46 (2006), 191. $a = (2.90 \pm 0.50) \times 10^{-2}$

• Dispersion theory:

M. Hoferichter et al., EPJ C74 (2014), 3180. $a = (3.07 \pm 0.06) \times 10^{-2}$

• Two-hadron saturation (THS) model: T. Husek et al., EPJ C75 (2015) 12, 586. $a = (2.92 \pm 0.04) \times 10^{-2}$

CELLO measurement:

- Extrapolation of space-like momentum region data fit to VMD model:
 - H. J. Behrend et al., Z. Phys. C49 (1991), 401. $a = (3.26 \pm 0.26_{stat}) \times 10^{-2}$

π^0 TFF Slope Measurements from π^0_D

Conclusions

• NA62 has presented new preliminary results on the measurement of the π^0 Transition From Factor slope parameter:

 $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2} = (3.70 \pm 0.64) \times 10^{-2}$

- The result is based on the NA62 2007 data statistics
- The selected neutral pions are produced from $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decays
- About 1 million π^0 Dalitz decays have been fully reconstructed
- The precision of the TFF measurement has been improved in the time-like momentum region
- Final result is in preparation:
 - Finalize systematic studies.