Recent Belle results on Bottomonium(-like) Spectroscopy

Youngjoon Kwon Yonsei University

MENU 2016 July 26-30

Recent results

- Energy scan near $\Upsilon(5S)$ and $\Upsilon(6S)$
- Bottomonium(-like) states
- Summary & Prospects

Introduction

If I could remember the names of all these particles, I'd be a botanist. - E. Fermi

 $R_b \equiv \cdot$

 $\frac{\sigma[\Upsilon(nS)\pi\pi]}{\sigma(\mu\mu)}$

$$\begin{split} &\Upsilon(2S) \qquad \Upsilon(3S) \\ & \frac{\text{PRL 100, 112001 (2008)}}{\Upsilon(5S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.59 \pm 0} \\ & \Upsilon(5S) \to \Upsilon(2S)\pi^{+}\pi^{-} \quad 0.85 \pm 0 \\ & \Upsilon(5S) \to \Upsilon(2S)\pi^{+}\pi^{-} \quad 0.85 \pm 0 \\ & \frac{\Upsilon(5S) \to \Upsilon(3S)\pi^{+}\pi^{-} \quad 0.52^{+0.}_{-0.}}{\Upsilon(2S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0} \\ & \Upsilon(3S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0 \\ & \Upsilon(4S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0 \end{split}$$

 \mathbf{I}

 $Bf(\Upsilon(4S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)) = (0.008 \pm 0.0003)\%$ • $\Upsilon(5B)(16S) = 1, 2, 3)$ Ve Perhaps, it is not a pure $b\bar{b}$ but an admixture? $\Upsilon(5S)$

 $\perp (\perp \sim)$

 0.04 ± 0.09 0.07 ± 0.16 $\frac{20}{17} \pm 0.10$ 0060 00090019

bigger by 0(10²)??

 $b\bar{b}u\bar{d}\rangle$

Recent results

- **Bottomonium transition**
 - (1) $\Upsilon(4S) \rightarrow \eta h_b(1P) \& h_b$ and η_b parameters
- Energy scan near Y(5S) and Y(6S) &
 - (2) via $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$
 - (3) via $\sigma(e^+e^- \rightarrow h_b(nP)\pi^+\pi^-)$
 - **Bottomonium-like exotic states**
 - (4) via amplitude analysis of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$
 - (5) $Z_b(10610) \& Z_b(10650)$ decaying to *B* mesons

10

PRD 91, 072003 (2015)

PRL 116, 212001 (2016)

1508.06562 submitted to PRL

PRD 93, 0111011(R) (2016)

PRL 115, 142001 (2015)

PRL 115, 142001 (2015)

PHYSICAL REVIEW LETTERS

First Observation of the Hadronic Transition $\Upsilon(4S) \rightarrow \eta h_b(1P)$ and New Measurement of the $h_b(1P)$ and $\eta_b(1S)$ Parameters

week ending 2 OCTOBER 2015

 $M_{\rm miss}(\eta)$ for $e^+e^- \to \Upsilon(4S) \to \eta h_b(1P)$ before and after background subtraction

- study $\eta_b(1S)$ by $\Upsilon(4S) \rightarrow \eta h_b(1P) \rightarrow \eta \gamma \eta_b(1S)$
 - main variable:
 - $\Delta M_{\rm miss} \equiv M_{\rm miss}(\eta\gamma) M_{\rm miss}(\eta)$
- η_b signal shall produce a peak at $m_{\eta_b(1S)} - m_{h_b(1P)}$
- a clean signal of $\eta_b(1S)$;
 - and we measure

 $m_{\eta_b(1S)} - m_{h_b(1P)} = (-498.6 \pm 1.7 \pm 1.2) \text{ MeV}/c^2$

TABLE III. Summary of the results of the searches for $\Upsilon(4S) \rightarrow \eta h_b(1P)$ and $h_b(1P) \rightarrow \gamma \eta_b(1S)$.

Observable

$\mathcal{B}[\Upsilon(4S) \to \eta h_b(1P)]$	(2.1
$\mathcal{B}[h_b(1P) \to \gamma \eta_b(1S)]$	
$M_{h_b(1P)}$	(989
$M_{\eta_b(1S)} - M_{h_b(1P)}$	(-49)
$\Gamma_{\eta_b(1S)}$	
$M_{\eta_b(1S)}$	(940
$\Delta M_{\rm HF}(1S)$	(+5
$\Delta M_{ m HF}(1P)$	(+

η_b parameters: consistent with previous Belle results, but not consistent with BaBar, CLEO

Value

 $18 \pm 0.11 \pm 0.18) \times 10^{-3}$ $(56 \pm 8 \pm 4)\%$ $99.3 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$ $98.6 \pm 1.7 \pm 1.2) \text{ MeV}/c^2$ $(8^{+6}_{-5} \pm 5) \text{ MeV}/c^2$ $00.7 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$ $59.6 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$ $0.6 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$

PHYSICAL REVIEW D 93, 011101(R) (2016)

Measurements of the $\Upsilon(10860)$ and $\Upsilon(11020)$ resonances via $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$

RAPID COMMUNICATIONS

Energy scan — motivations

- Y(10860) has been interpreted to be a pure S-wave, $J^{PC} = 1^{-1}$
- But several recent measurements bring questions to this
 - peak shifts, anomalously high decay rates to $\Upsilon(nS)\pi\pi$, non-suppression of spin-flip process, etc.
- Moreover, unlike the charmonium cases, all cross sections around Y(10860) and Y(11020) show similar structure
 - Just two peaks "5S" and "6S"
 - This difference, to charmonia, is not understood

essentially, no continuum contribution

 Interference between Y(5S) and Y(6S) is taken into account in the fit

$$\mathcal{F}'_{n}(\sqrt{s}) = \Phi_{n}(\sqrt{s}) \cdot \{|A_{5S,n}f_{5S}|^{2} + |A_{6S,n}f_{6S}|^{2} + 2k_{n}A_{5S,n}A_{6S,n}\Re[e^{i\delta_{n}}f_{5S}f_{6S}^{*}]\}.$$

 Measure resonance parameters of Y(5S) and Y(6S) using this cross section

 $R'_{b,i} \equiv R_{b,i} - \sum \sigma_{\text{ISR},i} / \sigma^0_{\mu^+\mu^-,i}$

- Strong interference between
 Υ(5S) and continuum
- Y(5S) peak is saturated by
 - $B^{(*)}B^*\pi, \Upsilon(nS)\pi\pi, h_b(nP)\pi\pi$
 - → leaving nearly no room for other final states ?? e.g. $B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}$
- What about large resonancecontinuum interference?
- Flat continuum assumption in this region is too much simplistic

by Quarkonium-Hybrid-Mixing (QHM) model

Our (Belle) conclusion is that "masses and widths for the $\Upsilon(10860)$ and $\Upsilon(11020)$ obtained from $R_b^{(\prime)}$ carry unknown systematic uncertainties due to the unknown shape of the continuum and its interaction with the resonance"

Ono, Sanda, Tornqvist PRD 34, 186 (1986)

	$M_{5S} ({\rm MeV}/c^2)$	Γ_{5S} (MeV)
R_b'	$10881.8^{+1.0}_{-1.1} \pm 1.2$	$48.5^{+1.9}_{-1.8}{}^{+2.0}_{-2.8}$
$R_{\Upsilon(nS)\pi\pi}$	$10891.1 \pm 3.2^{+0.6}_{-1.7}$	$53.7^{+7.1}_{-5.6}{}^{+1.3}_{-5.4}$

	$\phi_{6S} - \phi_{5S}(\delta)$ (rad)	χ^2/dof
R_b'	$-1.87^{+0.32}_{-0.51} \pm 0.16$	56/50
$R_{\Upsilon(nS)\pi\pi}$	$-1.0 \pm 0.4^{+1.4}_{-0.1}$	51/56

We report only the parameters from $R_{Y(nS)\pi\pi}$ as our official results.

1508.06562, *submitted to PRL*

Energy scan of the $e^+e^- \rightarrow h_b(nP)\pi^+\pi^-$ (n = 1, 2) cross sections and evidence for $\Upsilon(11020)$ decays into charged bottomonium-like states

- Energy scan of the $\sigma[e^+e^- \rightarrow h_b(nP)\pi^+\pi^-]$ (n = 1, 2)
- Evidence for $\Upsilon(11020)$ decays into Z_h^{\pm} states

Essentially the same structure (two resonances and almost no continuum) as in $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$

$h_b(IP)$ and $h_b(2P)$ from the five data points near Y(6S)

First evidence (S = 3.5 σ) of $\Upsilon(6S) \rightarrow h_b(1P)\pi^+\pi^-$

First observation (S = 5.3 σ) of $\Upsilon(6S) \rightarrow h_b(2P)\pi^+\pi^-$ The efficiency-corrected yields of (a) $h_b(1P)\pi^+\pi^-$ and (b) $h_b(2P)\pi^+\pi^-$, as functions of $M_{\rm miss}(\pi)$

single $Z_b(10610)$ hypothesis is excluded at 3.3 σ level single $Z_b(10650)$ hypothesis is not excluded

PHYSICAL REVIEW D 91, 072003 (2015)

Amplitude analysis of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ at $\sqrt{s} = 10.866$ GeV

$e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ at $\sqrt{s} = 10.866$ GeV Dalitz plots: (top) sideband, (bottom) signal region

27

nominal model: $J^P = 1^+$ for both Z_b states (solid) comparison: $J^{P} = 2^{+}$ for both Z_{b} states (dashed)

See back-up slide for other plots!

Fit results for $\Upsilon(2S)\pi\pi[\Upsilon(3S)\pi\pi$ events. Shown in the table is the difference in \mathcal{L} values.

		Z_b
$Z_b(10610)$	1+	1-
1+	0(0)	60(33)
1-	226(47)	264(73)
2+	205(33)	235(104)
2-	289(99)	319(111)

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z_b^{\mp}(10610)\pi^{\pm}}, \%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0\pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7\pm3.4^{+2.5}_{-1.3}$
$f_{Z_b^{\mp}(10650)\pi^{\pm}}, \%$	$0.87 \pm 0.32 \substack{+0.16 \\ -0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3\pm3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2\pm3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67\pm 36^{+24}_{-52}$	$-10\pm13^{+34}_{-12}$	$-5\pm22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40\pm0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07 ^{+0.32}_{-0.11}$	$0.69\pm0.09^{+0.18}_{-0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-0.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	
$f_{\Upsilon(nS)(\pi^{+}\pi^{-})_{S}}, \ \%$	$86.5\pm3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+6.5}_{-3.5}$	$44.0\pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$		

TABLE VI. Summary of results of fits to $\Upsilon(nS)\pi^+\pi^-$ events in the signal regions.

(cross section) × (BF)

$$egin{aligned} &\sigma_{Z_b^{\pm}(10610)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} = 1, \ &\sigma_{Z_b^{\pm}(10610)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} = 2, \ &\sigma_{Z_b^{\pm}(10610)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} = 2, \ &\sigma_{Z_b^{\pm}(10650)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} = 2, \ &\sigma_{Z_b^{\pm}(10650)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} = 1, \ &\sigma_{Z_b^{\pm}(10650)\pi^{\mp}} imes \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} = 1, \end{aligned}$$

```
110 \pm 27^{+36}_{-10} fb
744 \pm 127^{+190}_{-86} fb
442 \pm 93^{+93}_{-115} fb
20 \pm 7^{+4}_{-3} fb
167 \pm 49^{+43}_{-21} fb
196 \pm 54^{+43}_{-25} fb.
```


PRL 116, 212001 (2016)

PHYSICAL REVIEW LETTERS

Observation of $Z_b(10610)$ and $Z_b(10650)$ **Decaying to** *B* **Mesons**

week ending 27 MAY 2016

Studying Z_b decays to B mesons – motivations

- $Z_b(10610)$ and $Z_b(10650)$ might be loosely bound $B\bar{B}^*$ and $B^*\bar{B}^*$ systems ("molecules")
- Possible alternatives:
 - hadroquarkonia
 - tetraquarks
- If indeed **molecules**, it is natural to expect Z_b 's decay dominantly into its constitutents, i.e. $Z_b(10610) \rightarrow B\overline{B}^*$ and $Z_b(10650) \rightarrow B^*\overline{B}^*$.
- Study resonant substructure in $\Upsilon(5S) \rightarrow (B\overline{B}^* + c.c.)\pi$ and $\Upsilon(5S) \rightarrow B^* \overline{B}^* \pi$

Bondar *et al.*, PRD 84, 054010 (2011)

Voloshin, PRD 87, 091501 (2013) Ali et al., PRD 85, 054011 (2012)

Studying Z_b decays to B mesons – how-to

• Reconstruct one B, then look at the recoil mass against $B\pi$ $B^+ \to J/\psi K^{(*)+}, \ \bar{D}^{(*)0}\pi^+$ $B^0 \to J/\psi K^{(*)0}, \ D^{(*)-}\pi^+$

• very little $B\bar{B}\pi$ contribution

• $\sim 10\%$ of signal leak into WS sample due to B^0 oscillations

To remove the correlation between $M_{\text{miss}}(B\pi)$ and M(B), and to improve the resolution, we use

 $M^*_{\rm miss}(B\pi) \equiv M_{\rm miss}(B\pi) + M(B) - m_B$

$M_{miss}(\pi)$ distribution

- Fit function \propto $|\mathcal{A}_{Z_b(10610)} + \mathcal{A}_{Z_b(10650)} + \mathcal{A}_{nr}|^2$
- model 0
 - $Z_b(10610)$ only, for $B\bar{B}^*\pi$
 - $Z_b(10650)$ only, for $B^*\overline{B}^*\pi$
- model 3
- no Z_b's; non-resonant only
 model 1
 - model 0 + non-resonant
- model 2
 - both Z_b 's for $B\overline{B}^*\pi$

10.69 10.71

$M_{miss}(\pi)$ distribution

Fit function \propto $|\mathcal{A}_{Z_b(10610)} + \mathcal{A}_{Z_b(10650)} + \mathcal{A}_{nr}|^2$

 $B\bar{B}^*\pi$

- $Z_b(10610)$ only vs. PHSH 6.3σ
- need non-resonant? 1.5σ
- need $Z_b(10650)$? 1.3 σ

 $B^*\bar{B}^*\pi$

- $Z_b(10650)$ only vs. PHSH 5.2 σ
- need non-resonant? 0.1σ

Channel Fraction, % $Z_{b}(10610)$ $0.54_{-0.13-0.08}^{+0.16+0.11}$ $\Upsilon(1S)\pi^+$ $3.62^{+0.76+0.79}_{-0.59-0.53}$ $\Upsilon(2S)\pi^+$ $\Upsilon(3S)\pi^+$ $2.15_{-0.42-0.43}^{+0.55+0.60}$ $3.45_{-0.71-0.63}^{+0.87+0.86}$ $h_h(1P)\pi^+$ $h_b(2P)\pi^+$ $4.67^{+1.24+1.18}_{-1.00-0.89}$ $B^+ \bar{B}^{*0} + \bar{B}^0 B^{*+}$ $85.6^{+1.5+1.5}_{-2.0-2.1}$ $R^{*+}\bar{R}^{*0}$

Dominant decay channels are: $Z_b(10610) \rightarrow B\bar{B}^*\pi$ $Z_b(10650) \rightarrow B^*\bar{B}^*\pi$

a smoking-gun signature of molecular structure

In conclusion,

- Since its discovery of Z_b's in 2012, Belle has added more and more studies/results on their properties
- Belle has updated the energy scan around Y(5S) and Y(6S) regions
 - → more precise resonance parameters as well as evidence for Y(6S) decays to Z_b 's
- Sirvation of $Y(4S) \rightarrow \eta h_b(1P)$ has been attained
- With Belle II to start in a couple years, we look forward to seeing more exciting and illuminating results

Back-up

nominal model: $J^P = 1^+$ for both Z_b states (solid) comparison: $J^{P} = 2^{+}$ for both Z_{b} states (dashed)

Mode Model 0 Model 1 Parameter Solution 1 Solutio $BB^*\pi$ $0.64 \pm$ 1.0 1.45 ± 0.24 $f_{Z_b(10610)}$ $f_{Z_b(10650)}$ • • • . . . • • $\phi_{Z_b(10650)}$, radians • • • • • • • • $0.41 \pm$ 0.48 ± 0.23 $f_{\rm nr}$ • • • $\phi_{\rm nr}$, radians -1.21 ± 0.19 $0.95 \pm$ • • • $2\log \mathcal{L}$ -300.6 -300 -304.7 $B^*B^*\pi$ 1.0 1.04 ± 0.15 $0.77 \pm$ $f_{Z_b(10650)}$ 0.02 ± 0.04 $0.24 \pm$ $f_{\rm nr}$ • • • $\phi_{\rm nr}$, radians 0.29 ± 1.01 $1.10 \pm$ • • • $2\log \mathcal{L}$ -182.4 -182 -182.4

TABLE I. Summary of fit results to the $M_{\text{miss}}(\pi)$ distributions for the three-body $BB^*\pi$ and $B^*B^*\pi$ final states.

	Model 2		Model 3
on 2	Solution 1	Solution 2	
0.15	1.01 ± 0.13	1.18 ± 0.15	• • •
•	0.05 ± 0.04	0.24 ± 0.11	• • •
•	-0.26 ± 0.68	-1.63 ± 0.14	• • •
0.17		• • •	1.0
0.32	• • •	• • •	• • •
0.5	-301.4	-301.4	-344.5
0.22			• • •
0.18			1.0
0.44			•••
2.4			-209.7