## Recent Belle results on

## Bottomonium(-like) Spectroscopy

 Youngjoon Kwon Yonsei University

MENU 2016 July 26-30 @ Kyoto Univ.

## Overview

## - Introduction

- Recent results
- Energy scan near $\mathrm{Y}(5 \mathrm{~S})$ and $\mathrm{Y}(6 \mathrm{~S})$
- Bottomonium(-like) states

Summary \& Prospects

## Introduction




If I could remember the names of all these particles, I'd be a botanist.

- E. Fermi

peak shift?

$$
\begin{array}{lc}
\text { PRL } 100, \text { I I } 200 \mathrm{I}(2008) & \Gamma(\mathrm{MeV}) \\
\hline \Upsilon(5 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.59 \pm 0.04 \pm 0.09 \\
\Upsilon(5 S) \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-} & 0.85 \pm 0.07 \pm 0.16 \\
\Upsilon(5 S) \rightarrow \Upsilon(3 S) \pi^{+} \pi^{-} & 0.52_{-0.17}^{+0.20} \pm 0.10 \\
\hline \Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.0060 \\
\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.0009
\end{array}
$$

bigger by

$$
\mathbf{O}\left(10^{2}\right) ? ?
$$

- $\Upsilon(5 S)$ has anomalously high rates to $\Upsilon(n S),(n=1,2,3)$
- Perhaps, it is not a pure $b \bar{b}$ but an admixture?


## Spin-flip puzzle with $h_{b}(n P)$



$\frac{\Gamma\left[\Upsilon(5 \mathrm{~S}) \rightarrow h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}\right]}{\Gamma\left[\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S}) \pi^{+} \pi^{-}\right]}= \begin{cases}0.46 \pm 0.08 \pm_{0.12}^{0.07} & \text { for } h_{b}(1 \mathrm{P}) \\ 0.77 \pm 0.08 \pm_{0.17}^{0.22} & \text { for } h_{b}(2 \mathrm{P})\end{cases}$

not suppressed as $\sim\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{2}$ ??

## Then there are exotic $Z_{b}^{+}$states

$\Upsilon(5 \mathrm{~S}) \rightarrow h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}$proceeds via 2 resonances!


$$
Z_{b}(10610)^{+} \text {and } Z_{b}(10650)^{+}
$$

and then we've found neutral counterpart $\mathrm{Z}_{\mathrm{b}}(\mathrm{IO6IO})^{0}$ too

## Then there are exotic $Z_{b}^{+}$states



## Recent results

- Bottomonium transition
(1) $\mathrm{Y}(4 \mathrm{~S}) \rightarrow \eta h_{b}(1 \mathrm{P}) \& h_{b}$ and $\eta_{b}$ parameters
- Energy scan near $\mathbf{Y}(5 \mathbf{S})$ and $\mathbf{Y}(6 \mathbf{S})$ \&
(2) via $\sigma\left(e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}\right)$
(3) via $\sigma\left(e^{+} e^{-} \rightarrow h_{b}(n P) \pi^{+} \pi^{-}\right)$
- Bottomonium-like exotic states
(4) via amplitude analysis of $e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$
(5) $Z_{b}(10610) \& Z_{b}(10650)$ decaying to $B$ mesons

First Observation of the Hadronic Transition $\Upsilon(4 S) \rightarrow \eta h_{b}(1 P)$ and New Measurement of the $h_{b}(1 P)$ and $\eta_{b}(1 S)$ Parameters


$$
M_{\mathrm{miss}}(\eta) \text { for } e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow \eta h_{b}(1 P)
$$

before and after background subtraction


TABLE III. Summary of the results of the searches for $\Upsilon(4 S) \rightarrow \eta h_{b}(1 P)$ and $h_{b}(1 P) \rightarrow \gamma \eta_{b}(1 S)$.

| Observable | Value |
| :--- | :---: |
| $\mathcal{B}\left[\Upsilon(4 S) \rightarrow \eta h_{b}(1 P)\right]$ | $(2.18 \pm 0.11 \pm 0.18) \times 10^{-3}$ |
| $\mathcal{B}\left[h_{b}(1 P) \rightarrow \gamma \eta_{b}(1 S)\right]$ | $(56 \pm 8 \pm 4) \%$ |
| $M_{h_{b}(1 P)}-M_{h_{b}(1 P)}$ | $(9899.3 \pm 0.4 \pm 1.0) \mathrm{MeV} / c^{2}$ |
| $M_{\eta_{b}(1 S)}$ | $(-498.6 \pm 1.7 \pm 1.2) \mathrm{MeV} / c^{2}$ |
| $\Gamma_{\eta_{b}(1 S)}$ | $\left(8_{-5}^{+6} \pm 5\right) \mathrm{MeV} / c^{2}$ |
| $M_{\eta_{b}(1 S)}$ | $(9400.7 \pm 1.7 \pm 1.6) \mathrm{MeV} / c^{2}$ |
| $\Delta M_{\mathrm{HF}}(1 S)$ | $(+59.6 \pm 1.7 \pm 1.6) \mathrm{MeV} / c^{2}$ |
| $\Delta M_{\mathrm{HF}}(1 P)$ | $(+0.6 \pm 0.4 \pm 1.0) \mathrm{MeV} / c^{2}$ |

$\eta_{b}$ parameters: consistent with previous Belle results, but not consistent with BaBar, CLEO

## (2)

PHYSICAL REVIEW D 93, 011101(R) (2016)

## Measurements of the $\Upsilon(\mathbf{1 0 8 6 0})$ and $\Upsilon(11020)$ resonances via $\sigma\left(e^{+} \boldsymbol{e}^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}\right)$

## Energy scan — motivations

(10860) has been interpreted to be a pure S-wave, JPC $=1^{--}$

- But several recent measurements bring questions to this
- peak shifts, anomalously high decay rates to $\Upsilon(n S) \pi \pi$, non-suppression of spin-flip process, etc.
- Moreover, unlike the charmonium cases, all cross sections around $Y(10860)$ and $Y(11020)$ show similar structure
- Just two peaks - " $5 S$ " and "6S"
- This difference, to charmonia, is not understood

- essentially, no continuum contribution
- Interference between $\Upsilon(5 S)$ and $\Upsilon(6 S)$ is taken into account in the fit

$$
\begin{aligned}
\mathcal{F}_{n}^{\prime}(\sqrt{s}) & =\Phi_{n}(\sqrt{s}) \cdot\left\{\mid A_{5 S}, n\right. \\
& \left.f_{5 S}\right|^{2} \\
& +\left|A_{6 S, n} f_{6 S}\right|^{2} \\
& \left.+2 k_{n} A_{5 S, n} A_{6 S, n} \Re\left[e^{i \delta_{n}} f_{5 S} f_{65}^{*}\right]\right\} .
\end{aligned}
$$

- Measure resonance parameters of $\Upsilon(5 S)$ and $\Upsilon(6 S)$ using this cross section

$$
R_{b, i}^{\prime} \equiv R_{b, i}-\sum \sigma_{\mathrm{ISR}, i} / \sigma_{\mu^{+} \mu^{-}, i}^{0}
$$



$$
\begin{aligned}
\mathcal{F}(\sqrt{s})= & \left|A_{\mathrm{ic}}\right|^{2}+\mid A_{\mathrm{c}}+A_{5 \mathrm{~S}} e^{i \phi_{5 \mathrm{~S}}} f_{5 \mathrm{~S}}(\sqrt{s}) \\
& +\left.A_{6 \mathrm{~S}} e^{i \phi_{6 \mathrm{~S}}} f_{6 \mathrm{~S}}(\sqrt{s})\right|^{2}
\end{aligned}
$$

- Strong interference between $Y(5 S)$ and continuum
- $\mathrm{Y}(5 \mathrm{~S})$ peak is saturated by
$B^{(*)} B^{*} \pi, \Upsilon(n S) \pi \pi, h_{b}(n P) \pi \pi$
$\rightarrow$ leaving nearly no room for other final states ??

$$
\text { e.g. } B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}
$$

- What about large resonancecontinuum interference?
- Flat continuum assumption in this region is too much simplistic
by Quarkonium-Hybrid-Mixing (QHM) model


Our (Belle) conclusion is that "masses and widths for the $\Upsilon(10860)$ and $\Upsilon(11020)$ obtained from $R_{b}^{(\prime)}$ carry unknown systematic uncertainties due to the unknown shape of the continuum and its interaction with the resonance"

Ono, Sanda, Tornqvist PRD 34, 186 (1986)

|  | $M_{5 \mathrm{~S}}\left(\mathrm{MeV} / c^{2}\right)$ | $\Gamma_{5 \mathrm{~S}}(\mathrm{MeV})$ | $M_{6 \mathrm{~S}}\left(\mathrm{MeV} / c^{2}\right)$ | $\Gamma_{6 \mathrm{~S}}(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: | :---: |
| $R_{b}^{\prime}$ | $10881.8_{-1.1}^{+1.0} \pm 1.2$ | $48.5_{-1.8-2.8}^{+1.9+2.0}$ | $11003.0 \pm 1.1_{-1.0}^{+0.9}$ | $39.3_{-1.6}^{+1.7+2.4}$ |
| $R_{\Upsilon(n \mathrm{~S}) \pi \pi}$ | $10891.1 \pm 3.2_{-1.7}^{+0.6}$ | $53.7_{-5.6-5.4}^{+7.1+1.4}$ | $10987.5_{-2.5-2.1}^{+6.4+9.0}$ | $61_{-19-20}^{++9}+$ |


|  |  |  |
| :--- | ---: | ---: |
| $\phi_{6 \mathrm{~S}}-\phi_{5 \mathrm{~S}}(\delta)(\mathrm{rad})$ | $\chi^{2} / \mathrm{dof}$ |  |
| $R_{b}^{\prime}$ | $-1.87_{-0.51}^{+0.32} \pm 0.16$ | $56 / 50$ |
| $R_{\Upsilon(n \mathrm{~S}) \pi \pi}$ | $-1.0 \pm 0.4_{-0.1}^{+1.4}$ | $51 / 56$ |

We report only the parameters from $R_{Y(\mathrm{nS}) \pi \pi}$ as our official results.
1508.06562, submitted to PRL

Energy scan of the $e^{+} e^{-} \rightarrow h_{b}(n P) \pi^{+} \pi^{-}(n=1,2)$ cross sections and evidence for $\Upsilon(11020)$ decays into charged bottomonium-like states

- Energy scan of the $\sigma\left[e^{+} e^{-} \rightarrow h_{b}(n P) \pi^{+} \pi^{-}\right](n=1,2)$
- Evidence for $\Upsilon(11020)$ decays into $Z_{b}^{ \pm}$states


Essentially the same structure (two resonances and almost no continuum) as in $\sigma\left(e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}\right)$

## $h_{b}(I P)$ and $h_{b}(2 P)$ from the five data points near $Y(6 S)$



First evidence ( $\mathrm{S}=3.5 \sigma$ ) of
$\Upsilon(6 S) \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}$


First observation ( $\mathbf{S}=\mathbf{5 . 3 \sigma}$ ) of $\Upsilon(6 S) \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}$

The efficiency-corrected yields of (a) $h_{b}(1 P) \pi^{+} \pi^{-}$and (b) $h_{b}(2 P) \pi^{+} \pi^{-}$, as functions of $M_{\text {miss }}(\pi)$

single $Z_{b}(10610)$ hypothesis is excluded at $3.3 \sigma$ level single $Z_{b}(10650)$ hypothesis is not excluded

PHYSICAL REVIEW D 91, 072003 (2015)
Amplitude analysis of $e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$at $\sqrt{s}=10.866 \mathrm{GeV}$

```
e}\mp@subsup{\boldsymbol{e}}{}{+}\mp@subsup{\boldsymbol{e}}{}{-}->\Upsilon(nS)\mp@subsup{\boldsymbol{\pi}}{}{+}\mp@subsup{\boldsymbol{\pi}}{}{-}\mathrm{ at }\sqrt{}{\boldsymbol{s}}=10.866\textrm{GeV
```



$$
e^{+} e^{-} \rightarrow \Upsilon(n S) \pi^{+} \pi^{-} \text {at } \sqrt{s}=10.866 \mathrm{GeV}
$$

## Dalitz plots: (top) sideband, (bottom) signal region









See back-up slide for other plots!
nominal model: $\mathrm{J}^{\mathrm{P}}=1^{+}$for both $Z_{b}$ states (solid)
comparison: $J^{\mathrm{P}}=2^{+}$for both $Z_{b}$ states (dashed)

Fit results for $\Upsilon(2 S) \pi \pi[\Upsilon(3 S) \pi \pi$ events. Shown in the table is the difference in $\mathcal{L}$ values.

|  | $Z_{b}(10650)$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $Z_{b}(10610)$ | $1^{+}$ | $1^{-}$ | $2^{+}$ | $2^{-}$ |
| $1^{+}$ | $0(0)$ | $60(33)$ | $42(33)$ | $77(63)$ |
| $1^{-}$ | $226(47)$ | $264(73)$ | $224(68)$ | $277(106)$ |
| $2^{+}$ | $205(33)$ | $235(104)$ | $207(87)$ | $223(128)$ |
| $2^{-}$ | $289(99)$ | $319(111)$ | $321(110)$ | $304(125)$ |

TABLE VI. Summary of results of fits to $\Upsilon(n S) \pi^{+} \pi^{-}$events in the signal regions.

| Parameter | $\Upsilon(1 S) \pi^{+} \pi^{-}$ | $\Upsilon(2 S) \pi^{+} \pi^{-}$ | $\Upsilon(3 S) \pi^{+} \pi^{-}$ |
| :---: | :---: | :---: | :---: |
| $f_{Z_{b}^{\mp}(10610) \pi^{ \pm}}, \%$ | $4.8 \pm 1.2_{-0.3}^{+1.5}$ | $18.1 \pm 3.1_{-0.3}^{+4.2}$ | $30.0 \pm 6.3_{-7.1}^{+5.4}$ |
| $Z_{b}(10610)$ mass, $\mathrm{MeV} / c^{2}$ | $10608.5 \pm 3.4_{-1.4}^{+3.7}$ | $10608.1 \pm 1.2_{-0.2}^{+1.5}$ | $10607.4 \pm 1.5_{-0.2}^{+0.8}$ |
| $Z_{b}(10610)$ width, MeV | $18.5 \pm 5.3_{-2.3}^{+6.1}$ | $20.8 \pm 2.5_{-2.1}^{+0.3}$ | $18.7 \pm 3.4_{-1.3}^{+2.5}$ |
| $f_{Z_{b}^{\mp}(10650) \pi^{ \pm}}, \%$ | $0.87 \pm 0.32_{-0.12}^{+0.16}$ | $4.05 \pm 1.2_{-0.15}^{+0.95}$ | $13.3 \pm 3.6_{-1.4}^{+2.6}$ |
| $Z_{b}(10650)$ mass, $\mathrm{MeV} / c^{2}$ | $10656.7 \pm 5.0_{-3.1}^{+1.1}$ | $10650.7 \pm 1.5_{-0.2}^{+0.5}$ | $10651.2 \pm 1.0_{-0.3}^{+0.4}$ |
| $Z_{b}(10650)$ width, MeV | $12.1{ }_{-4.8-0.6}^{+11.3+2.7}$ | $14.2 \pm 3.7_{-0.4}^{+0.9}$ | $9.3 \pm 2.2_{-0.5}^{+0.3}$ |
| $\phi_{Z}$, degrees | $67 \pm 36_{-52}^{+24}$ | $-10 \pm 13_{-12}^{+34}$ | $-5 \pm 22_{-33}^{+15}$ |
| $c_{Z_{b}(10650)} / c_{Z_{b}(10610)}$ | $0.40 \pm 0.12_{-0.11}^{+0.05}$ | $0.53 \pm 0.07_{-0.11}^{+0.32}$ | $0.69 \pm 0.09_{-0.07}^{+0.18}$ |
| $f_{\mathrm{Y}_{(n S) f_{2}(1270)}, \%}$ | $14.6 \pm 1.5_{-0.7}^{+6.3}$ | $4.09 \pm 1.0_{-1.0}^{+0.33}$ | - |
| $f_{\mathrm{Y}(n S)\left(\pi^{+} \pi^{-}\right)_{s}}, \%$ | $86.5 \pm 3.2_{-4.9}^{+3.3}$ | $101.0 \pm 4.2_{-3.5}^{+6.5}$ | $44.0 \pm 6.2_{-4.3}^{+1.8}$ |
| $f^{f_{\text {(nS) } f_{0}(980)}, \%}$ | $6.9 \pm 1.6_{-2.8}^{+0.8}$ | - | - |

## (cross section) $\times(B F)$

$$
\begin{aligned}
& \sigma_{Z_{b}^{ \pm}(10610) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(1 S) \pi^{\mp}}=110 \pm 27_{-10}^{+36} \mathrm{fb} \\
& \sigma_{Z_{b}^{ \pm}(10610) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(2 S) \pi^{\mp}}=744 \pm 127_{-86}^{+190} \mathrm{fb} \\
& \sigma_{Z_{b}^{ \pm}(10610) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(3 S) \pi^{\mp}}=442 \pm 93_{-115}^{+93} \mathrm{fb} \\
& \sigma_{Z_{b}^{ \pm}(10650) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(1 S) \pi^{\mp}}=20 \pm 7_{-3}^{+4} \mathrm{fb} \\
& \sigma_{Z_{b}^{ \pm}(10650) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(2 S) \pi^{\mp}}=167 \pm 49_{-21}^{+43} \mathrm{fb} \\
& \sigma_{Z_{b}^{ \pm}(10650) \pi^{\mp}} \times \mathcal{B}_{\Upsilon(3 S) \pi^{\mp}}=196 \pm 54_{-25}^{+43} \mathrm{fb} .
\end{aligned}
$$

Observation of $Z_{b}(10610)$ and $Z_{b}(10650)$ Decaying to $B$ Mesons

## Studying $Z_{b}$ decays to $B$ mesons - motivations

- $Z_{b}(10610)$ and $Z_{b}(10650)$ might be loosely bound $B \bar{B}^{*}$ and $B^{*} \bar{B}^{*}$ systems ("molecules")

Bondar et al., PRD 84, 054010 (2011)

- Possible alternatives:
- hadroquarkonia
- tetraquarks

Voloshin, PRD 87, 091501 (2013)
Ali et al., PRD 85, 054011 (2012)

- If indeed molecules, it is natural to expect $Z_{b}$ 's decay dominantly into its constitutents, i.e. $Z_{b}(10610) \rightarrow B \bar{B}^{*}$ and $Z_{b}(10650) \rightarrow B^{*} \bar{B}^{*}$.
- Study resonant substructure in $\Upsilon(5 S) \rightarrow\left(B \bar{B}^{*}+\right.$ c.c. $) \pi$ and $\Upsilon(5 S) \rightarrow B^{*} \bar{B}^{*} \pi$


## Studying $Z_{b}$ decays to $B$ mesons - how-to



- Reconstruct one $B$, then look at the recoil mass against $B \pi$

$$
\begin{aligned}
& B^{+} \rightarrow J / \psi K^{(*)+}, \bar{D}^{(*) 0} \pi^{+} \\
& B^{0} \rightarrow J / \psi K^{(*) 0}, D^{(*)-} \pi^{+}
\end{aligned}
$$



- very little $B \bar{B} \pi$ contribution
- $\sim 10 \%$ of signal leak into WS sample due to $B^{0}$ oscillations
$M_{\text {miss }}(\pi)$ distribution


Fit function $\propto$

$$
\left|\mathcal{A}_{Z_{b}(10610)}+\mathcal{A}_{Z_{b}(10650)}+\mathcal{A}_{\mathrm{nr}}\right|^{2}
$$

- model 0
- $Z_{b}(10610)$ only, for $B \bar{B}^{*} \pi$
- $Z_{b}(10650)$ only, for $B^{*} \bar{B}^{*} \pi$
- model 3
- no $Z_{b}$ 's; non-resonant only
- model 1
- model $0+$ non-resonant
- model 2
- both $Z_{b}$ 's for $B \bar{B}^{*} \pi$

----. Model-0
Model-3
Background
$\begin{array}{lllllll}10.59 & 10.61 & 10.63 & 10.65 & 10.67 & 10.69 & 10.71\end{array}$
$M_{\text {miss }}(\pi), \mathrm{GeV} / \mathrm{c}^{2}$
$M_{\text {miss }}(\pi)$ distribution


Fit function $\propto$
$\left|\mathcal{A}_{Z_{b}(10610)}+\mathcal{A}_{Z_{b}(10650)}+\mathcal{A}_{\mathrm{nr}}\right|^{2}$
$B \bar{B}^{*} \pi$

- $Z_{b}(10610)$ only vs. PHSH $6.3 \sigma$
- need non-resonant? $1.5 \sigma$
- need $Z_{b}(10650)$ ? $1.3 \sigma$
$B^{*} \bar{B}^{*} \pi$
- $Z_{b}(10650)$ only vs. PHSH
$5.2 \sigma$
- need non-resonant?

Channel Fraction, \%

|  | $Z_{b}(10610)$ | $Z_{b}(10650)$ |
| :---: | :---: | :---: |
| $\Upsilon(1 S) \pi^{+}$ | $0.54{ }_{-0.13-0.08}^{+0.16+0.11}$ | $0.17_{-0.06-0.02}^{+0.07+0.03}$ |
| $\Upsilon(2 S) \pi^{+}$ | $3.62_{-0.59-0.53}^{+0.76+0.79}$ | $1.39_{-0.38-0.23}^{+0.48+0.34}$ |
| $\Upsilon(3 S) \pi^{+}$ | $2.15{ }_{-0.42-0.43}^{+0.55+0.60}$ | $1.633_{-0.42-0.28}^{+0.53+0.39}$ |
| $h_{b}(1 P) \pi^{+}$ | $3.45{ }_{-0.71-0.63}^{+0.87+0.86}$ | $8.41_{-2.12-1.06}^{+2.43+1.49}$ |
| $h_{b}(2 P) \pi^{+}$ | $4.67_{-1.00-0.89}^{+1.24+1.18}$ | $14.7_{-2.8-2.3}^{+3.2+2.8}$ |
| $B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}$ | $85.6_{-2.0-2.1}^{+1.5+1.5}$ | ... |
| $B^{*+} \bar{B}^{* 0}$ |  | $73.7_{-4.4-3.5}^{+3.4+2.7}$ |

## Dominant decay channels are:

$$
\begin{aligned}
Z_{b}(10610) & \rightarrow B \bar{B}^{*} \pi \\
Z_{b}(10650) & \rightarrow B^{*} \bar{B}^{*} \pi
\end{aligned}
$$

a smoking-gun signature of molecular structure

## In conclusion,

- Since its discovery of $Z_{b}$ 's in 2012, Belle has added more and more studies/results on their properties
- Belle has updated the energy scan around $Y(5 S)$ and $Y(6 S)$ regions
$\rightarrow$ more precise resonance parameters as well as evidence for $Y(6 S)$ decays to $Z_{b}$ 's
- First observation of $Y(4 S) \rightarrow \eta h_{b}(1 P)$ has been attained
- With Belle II to start in a couple years, we look forward to seeing more exciting and illuminating results


## Back-up



nominal model: $\mathrm{JP}^{\mathrm{P}}=\mathbf{1}^{+}$for both $Z_{b}$ states (solid) comparison: $J^{\mathrm{P}}=2^{+}$for both $Z_{b}$ states (dashed)

TABLE I. Summary of fit results to the $M_{\text {miss }}(\pi)$ distributions for the three-body $B B^{*} \pi$ and $B^{*} B^{*} \pi$ final states.

| Mode | Parameter | Model 0 | Model 1 |  | Model 2 |  | Model 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Solution 1 | Solution 2 | Solution 1 | Solution 2 |  |
| $B B^{*} \pi$ | $f_{Z_{b}(10610)}$ | 1.0 | $1.45 \pm 0.24$ | $0.64 \pm 0.15$ | $1.01 \pm 0.13$ | $1.18 \pm 0.15$ | $\ldots$ |
|  | $f_{Z_{b}(10650)}$ | $\ldots$ | $\ldots$ | $\ldots$ | $0.05 \pm 0.04$ | $0.24 \pm 0.11$ | $\ldots$ |
|  | $\phi_{Z_{b}(10650)}$, radians | $\ldots$ | $\ldots$ | $\ldots$ | $-0.26 \pm 0.68$ | $-1.63 \pm 0.14$ | $\ldots$ |
|  | $f_{\text {nr }}$ | $\ldots$ | $0.48 \pm 0.23$ | $0.41 \pm 0.17$ | $\ldots$ | $\ldots$ | 1.0 |
|  | $\phi_{\mathrm{nr}}$, radians | $\ldots$ | $-1.21 \pm 0.19$ | $0.95 \pm 0.32$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $B^{*} B^{*} \pi$ | $2 \log \mathcal{L}$ | -304.7 | -300.6 | -300.5 | -301.4 | -301.4 | -344.5 |
|  | $f_{Z_{b}(10650)}$ | 1.0 | $1.04 \pm 0.15$ | $0.77 \pm 0.22$ |  |  | $\ldots$ |
|  | $f_{\text {nr }}$ | $\ldots$ | $0.02 \pm 0.04$ | $0.24 \pm 0.18$ |  | 1.0 |  |
|  | $\phi_{\mathrm{nr}}$, radians | $\ldots$ | $0.29 \pm 1.01$ | $1.10 \pm 0.44$ |  | $\ldots$ |  |
|  | $2 \log \mathcal{L}$ | -182.4 | -182.4 | -182.4 |  | -209.7 |  |

