Electromagnetic transition form factor of

the η meson with WASA-at-COSY

Ankita Goswami

(for the WASA-at-COSY collaboration)
Indian Institute of Technology Indore

14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Motivation

Why it is interesting?

$>$ Intrinsic structure of hadrons
$>$ Vector meson dominance
>Physics beyond standard model
\checkmark rare pion decay $\pi^{0} \rightarrow \mathrm{e}^{+}{ }^{-}$

$\checkmark g-2$ of muon

Transition Form Factor

Transition Form Factor $F\left(q^{2}\right)$ of the η meson is observed through the rare electromagnetic decay $\eta \rightarrow \mathrm{ye}^{+} \mathrm{e}^{-}\left(\mathrm{BR} \rightarrow 6.9 \times 10^{-3}\right)$.
$\frac{d \Gamma\left(\eta \rightarrow \gamma e^{+} e^{-}\right)}{d q^{2} \cdot \Gamma(\eta \rightarrow \gamma \gamma)}=\frac{2 \alpha}{3 \pi}\left[1-\frac{4 m_{e}^{2}}{q^{2}}\right]^{1 / 2}\left[1+\frac{2 m_{e}^{2}}{q^{2}}\right] \frac{1}{q^{2}}\left[1-\frac{q^{2}}{m_{\eta}^{2}}\right]^{3}\left|F_{\eta}\left(q^{2}\right)\right|^{2}$
$F\left(q^{2}\right)=\frac{1}{1-\frac{q^{2}}{\Lambda^{2}}} \approx 1+\frac{q^{2}}{\Lambda^{2}} \quad\left|\frac{d F\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}=\frac{1}{\Lambda^{2}}=$
Λ is pole mass and $\mathbf{b}_{\boldsymbol{\eta}}$ is slope of the form factor

PHYSICAL REVIEW C 89, 044608 (2014) $\Lambda^{-2}=\left(1.95 \pm 0.15_{\text {stat }} \pm 0.10_{\text {syst }}\right) \mathrm{GeV}^{-2}$

Experimental setup

COSY (Cooler Synchrotron)

> Circumference 184m
$>$ Momentum range $0.3-3.75 \mathrm{GeV}$

Fig: Schematic view of COSY

WASA (Wide Angle Shower Apparatus) set up

Reaction: $p+p \rightarrow p+p+\eta\left(e^{+} e^{-} y\right)$ at beam energy 1.4 GeV
Pellet line

- Fixed target experiment, pellet target, 22.9 \% of 4л acceptance
- Recoil protons are detected with the forward detector
- $e^{+} e^{-}$are detected with the mini drift chamber in the magnetic field of solenoid
- Photons are detected in the calorimeter

Datasets: pp $\rightarrow p p \eta$

Data taken	2008	2010	2012
Duration of beam time	2 weeks	7 weeks	8 weeks
$\boldsymbol{\eta}$ detected	$\sim 1.10^{8}$	$\sim 4.10^{8}$	$\sim 5.10^{8}$

Data Analysis: Particle Identification

- Protons are identified in the forward part of the detector
- Deposit energy in forward range hodoscope layers
- Different types of particles leave distinct bands
- Momentum times charge of the particle is plotted against the energy deposited by particle in the calorimeter

Energy-momentum balance

Missing Energy:
$E_{\text {target }}+E_{\text {beam }}-\left(E_{\text {proton } 1}+E_{\text {proton2 }}+E_{e+}+E_{e-}+E_{v}\right)$

Missing Momentum:

$P_{\text {target }}+P_{\text {beam }}-\left(P_{\text {proton1 }}+P_{\text {proton2 }}+P_{\text {et }}+P_{\mathrm{e} .}+P_{\mathrm{y}}\right)$
Background suppression: event candidates will still have pions

Conversion background

- Photons interact with beam-pipe material and convert into $e^{+} e^{-}$pairs
- $\eta \rightarrow y y$ contributes
- Invariant mass at beam pipe plotted against the radius of closest approach of $\mathrm{e}^{+} \mathrm{e}^{-}$

Split off background

- Photons and electrons make electromagnetic shower in the calorimeter
- Split-offs are discontinuous showers
- We look at the energy deposited in the calorimeter v/s the angle between photon candidate and closest charged track
split offs are located at low energy and small angle

Missing mass of η meson

- Main background source is pp $\rightarrow \boldsymbol{p p} \pi^{0} \pi^{0}\left(\boldsymbol{\pi}^{0}\right.$ Dalitz decay)
- Background fit: pol $4 \times$ MC $\left(p p \rightarrow p p \pi^{0} \pi^{0}\left(\pi^{0}\right.\right.$ Dalitz decay)) excluding the peak region
- produced η : 10^{8}
- approximately $43 \mathrm{k} \eta$ decays

Background study: cocktail plots

preliminary and not acceptance corrected

- Direct and competing decays
- Phase space simulations (for now)
$\Delta-\Delta, \pi^{+} л^{-}$correlations have to be implemented

Background channel	Cross- section/ Branching ratio	Probability of being detected as signal $(\%)$

PDG rel. BR. $\left(\eta \rightarrow e^{+} e y / \eta \rightarrow y y\right)$	$.017 \pm .001$
WASA	$.019 \pm .0001$

Normalization of background channels is done relative to each other and scaled with data

Status of pp2012 data

preliminary and not acceptance corrected
Damian Pszczel

reaching for the double Dalitz decay

- WASA-at-COSY standard analysis
- preliminary and not acceptance corrected.
- consistency-check : yield consistent with our preliminary single Dalitz decay analysis
 goal: evaluate branching ratio
latest WASA result: nucl-ex/1509.06588 $B R=\left(3.2 \pm 0.9_{\text {stat }} \pm 0.5_{\text {sys }}\right) \times 10^{-5}$

Summary

$\eta \rightarrow \mathbf{y e}^{+} \mathbf{e}^{-}$

- Main source of background is $\mathrm{pp} \rightarrow \mathrm{pp}^{0} \pi^{\circ}\left(\pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma\right)$
- Detailed study of background channels is ongoing

$\boldsymbol{\eta} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{e}^{+} \mathbf{e}^{-}$

- Branching ratio

Outlook

- As a different approach, kinematic fit to suppress background
- Transition form factor of η

