Electromagnetic transition form factor of the η meson with WASA-at-COSY

14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Motivation

Why it is interesting?

- Intrinsic structure of hadrons
- Vector meson dominance
- Physics beyond standard model

Transition Form Factor

Transition Form Factor F (q²) of the η meson is observed through the rare electromagnetic decay $\eta \rightarrow \gamma e^+ e^-$ (BR $\rightarrow 6.9 \times 10^{-3}$).

$$\frac{d\Gamma(\eta \to \gamma e^+ e^-)}{dq^2 \cdot \Gamma(\eta \to \gamma \gamma)} = \frac{2\alpha}{3\pi} \left[1 - \frac{4m_e^2}{q^2} \right]^{1/2} \left[1 + \frac{2m_e^2}{q^2} \right] \frac{1}{q^2} \left[1 - \frac{q^2}{m_\eta^2} \right]^3 |F_\eta(q^2)|^2$$
N.M. Kroll and W. Wada, Phys. Rev. 98 (1955) 1355
$$F(q^2) = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{if } f(q^2) = \frac{1}{\Lambda^2} =$$

07/29/16

WASA-at-COSY: high statistics dataset

Experimental setup

COSY (Cooler Synchrotron)

- Circumference 184m
- Momentum range 0.3-3.75 GeV

WASA (Wide Angle Shower **Apparatus) set up**

Reaction: $p + p \rightarrow p + p + \eta(e^+ e^- y)$ at beam energy 1.4 GeV

Fixed target experiment, pellet target, 22.9 % of 4л acceptance

Recoil protons are detected with the forward detector

e⁺e⁻ are detected with the mini drift chamber in the magnetic field of solenoid

Photons are detected in the calorimeter

07/29/16

Mini

Datasets: *pp*→*ppŋ*

Data taken	2008	2010	2012
Duration of beam time	2 weeks	7 weeks	8 weeks
η detected	$\sim 1.10^{8}$	~ 4.10 ⁸	~ 5.10 ⁸

Data Analysis: Particle Identification

 $p + p \rightarrow p + p + \eta(e^+ e^- y)$

- Protons are identified in the forward part of the detector
- Deposit energy in forward range hodoscope layers

- Different types of particles leave distinct bands
- Momentum times charge of the particle is plotted against the energy deposited by particle in the calorimeter

Energy-momentum balance

8

Conversion background

- Photons interact with beam-pipe material and convert into e⁺e⁻ pairs
- **a** $\eta \rightarrow yy$ contributes
- Invariant mass at beam pipe plotted against the radius of closest approach of e⁺e⁻

Split off background

- Photons and electrons make electromagnetic shower in the calorimeter
- Split-offs are discontinuous showers
- We look at the energy deposited in the calorimeter v/s the angle between photon candidate and closest charged track

split offs are located at low energy and small angle

Missing mass of η meson

Main background source is $pp \rightarrow pp\pi^0\pi^0$ (π^0 Dalitz decay)

- Background fit: pol4 × MC (pp \rightarrow pp $\pi^0\pi^0$ (π^0 Dalitz decay)) excluding the peak region
- produced η : 10⁸
- approximately 43k η decays

Background study: cocktail plots

preliminary and not acceptance corrected

- Direct and competing decays
- Phase space simulations (for now)
- \square Δ - Δ , $\pi^+\pi^-$ correlations have to be implemented

Background channel	Cross- section/ Branching ratio	Probability of being detected as signal (%)
рр → ррл⁰(е⁺е⁻ү)л⁰(үү)	324 µb	.069
рр→ррл⁺л⁻л⁰(е⁺е⁻ү)	4.6 µb	.00041
рр → ррл⁰(е⁺е⁻ү) л⁰(үү) л⁰(үү)	1.34 µb	.011
$\eta \to \pi^+ \pi^- \pi^0$	22.6 %	.0009
η→л⁺л⁻γ	4.68 %	.0287
$\eta \to \gamma \gamma$	39 %	.0032
η → π0(γγ)π0(γγ)π0(e+e-γ)	32 %	.122
PDG rel. BR. (η → e⁺e⁻γ/η → γγ)	.017 ± .001	
WASA	.019 ± .0001	

Normalization of background channels is done relative to each other and scaled with data 07/29/16

Status of pp2012 data

reaching for the double Dalitz decay

Susan Schadmand

٠

Summary

 $\eta \to \gamma e^+ e^-$

- Main source of background is $pp \rightarrow pp\pi^0\pi^0(\pi^0 \rightarrow e^+e^-\gamma)$
- Detailed study of background channels is ongoing

$$\eta \rightarrow e^+ e^- e^+ e^-$$

Branching ratio

Outlook

As a different approach, kinematic fit to suppress background
 Transition form factor of η