REVIEW OF TMD MEASUREMENTS

Contalbrigo Marco INFN Ferrara

MENU2016 July 30, 2016 Kyoto University

The QCD View

Non Perturbative Physics

Contalbrigo M.

The Strong-Force Confined-Universe

Dynamic Spin

- Parton polarization
- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations - dPDFs

- Short range
- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

The 3D Nucleon Structure

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

Physics reactions

Contalbrigo M.

MENU2016, 30th July 2016, Kyoto

A World-wide Challenge

The SIDIS Landscape

Limit defined by luminosity Different Q² for same x range $< Q^2 > (GeV^2)$ 10 $Q^2 (GeV^2)$ COMPASS HERMES 9 CLAS12 8 CLAS6 7 6 8 5 6 4 COMPASS 4 HERMES EIC 3 2 ab 12 1034 0 0.3 0.4 0.5 0.6 0.7 0.1 0.2 2 Χ **HERMES**: < 2007 10³² COMPASS: < 2017 (2021++)**10**³¹ 10³⁵ JLab6 < 2012 10 -2 10 -1 JLab12: 2017++ XB Valence Sea EIC: R. Yoshida talk 2025++

SIDIS Cross-Section & TMDs

$$\frac{d^{6}\sigma}{dxdQ^{2}dzdP_{h}d\phi d\phi_{s}} \propto \left[F_{UU} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\right] + S_{L}\left[\varepsilon \sin(2\phi)F_{UL}^{\sin(2\phi)}\right] \\ + S_{T}\left[\sin(\phi - \phi_{s})F_{UT}^{\sin(\phi - \phi_{s})} + \varepsilon \sin(\phi + \phi_{s})F_{UT}^{\sin(\phi + \phi_{s})} + \varepsilon \sin(3\phi - \phi_{s})F_{UT}^{\sin(3\phi - \phi_{s})}\right] \\ + S_{L}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}F_{LL}\right] + S_{T}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}\cos(\phi - \phi_{s})F_{LT}^{\cos(\phi - \phi_{s})}\right] + O\left(\frac{1}{Q}\right)$$
Quark fragmentation
$$TMD \ Factorization holds \ for \ p_{T} < Q$$
Quark parton distribution

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \otimes D = x \sum_{q} e_{q}^{2} \int d^{2} p_{T} d^{2} k_{T} \ \delta^{(2)}(\mathbf{P}_{h\perp} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \ w(\mathbf{k}_{T}, \mathbf{p}_{T}) \ f^{q}(x, k_{T}^{2}) \ D^{q}(z, p_{T}^{2})$$

Quark Correlators

First evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep**→**e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero Sivers function !!

Contalbrigo M.

Non-zero transversity !!

The Multi-D Approach

Umpolarized Multiplicities

Disentangle all the kinematic dependences

Asymmetries so far used to suppress systematics effects

$$A_{LL} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

$$A_{LL} = \frac{1}{fP_T P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

They suppress also physics (i.e. evolution)

MultiD extraction of asymmertries requires multiD knowledge of nuclear effects from real fixed targets (⁶LiD, NH₃, ³He).

Outlook: work directly with cross-section differences or move to a collider (EIC)

Parton Number Density

Transverse Momentum Dependent Distr.

Related to:

- Low-pT regime: precise xsec measurements
- Parton correlations: short range, MPI
- Low-x physics: color glass condensate
- Hadronization: parton dynamic in medium

MENU2016, 30th July 2016, Kyoto

Unpolarized TMDs

Large tiles extending up to the inverse of the gauge field fluctuation scale $\rho << M$

May short range parton correlations manifest also in pp MPI ?

Reflect different fragmentation

May be enhanced in medium.

Parton propagation in cold matter as complementary study to QGP

The P_h_unintegrated multiplicities

 $\sigma_{IIII} \propto f_1 (k_T \ldots) \otimes D_1 (p_T \ldots)$

Disentanglement of z and P_{hL} : access to the transverse intrinsic quark k_T and fragmentation p_T .

i.e. from gaussian anstaz:

 $\left\langle P_{h\perp}^2 \right\rangle = z^2 \left\langle k_T^2 \right\rangle + \left\langle p_T^2 \right\rangle$

HERMES $M_n^{\pi^+}$ 10¹ ■<z>=0.15 ■<z>=0.15 < z >= 0.2< z > = 0.22▲<z>=0.27 <z>=0.28 10⁰ <z>=0.34 ▼<z>=0.34 < z > = 0.42= < z > = 0.53<z>=0.42 □<z>=0.53 $Q^2 = 1.80 \text{ GeV}^2$ $Q^2 = 2.90 \text{ GeV}^2$ **10**⁻¹ $x_B = 0.10$ $x_B = 0.15$ 10¹ <z>=0.1 < z > = 0.14•<z>=0.22 •<z>=0.28 ▲<z>=0.27 10⁰ ▼<z>=0.34 ▼<z>=0.34 <z>=0.42 +<z>=0.42 □<z>=0.53 $\Box < z > = 0.53$ $Q^2 = 5.20 \text{ GeV}^2$ Q²=9.20 GeV 10⁻¹ $x_B = 0.25$ x_B=0.41 0.1 0.4 0.7 1.0 0.1 0.40.7 1.0 P_T (GeV) HERMES $M_D^{K^+}$ 10⁰ ■<z>=0.15 <z>=0.15 •<z>=0.22 < z > = 0.28< z > = 0.28< z > = 0.34▼<z>=0.34 <z>=0.42 ◆<z>=0.42 10⁻¹ < z > = 0.530 < z > = 0.53 $Q^2 = 1.80 \text{ GeV}^2$ $Q^2=2.90~{
m GeV}^2$ x_B=0.10 $x_B = 0.15$ 10⁻² 10 < z >= 0.13< z >= 0.22< z >= 0.28 $\langle z \rangle = 0.15$ ▲<z>=0.27 ▼<z>=0.34 ▼<z>=0.34 < z > = 0.42•<z>=0.42 10⁻¹ < z > = 0.53□<z>=0.53 $Q^2 = 9.20 \text{ GeV}$ $Q^2 = 5.20 \text{ GeV}$ x_B=0.25 $x_B = 0.41$ 10-2 0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0

 P_T (GeV)

MENU2016, 30th July 2016, Kyoto

Fragmentation Functions @ B-factories

Belle [ar]

[arXiv 1301.6183]

TMD Evolution

Medium modification

In terms of the QCD, there are several contributions to P_T distribution of hadrons produced in SIDIS:

- primordial transverse momentum + gluon radiation of the struck quark
- the formation and soft multiple interactions of the "pre-hadron"
- the interaction of the formed hadrons with the surrounding hadronic medium

HERMES [arXiv: 0906.2478]

E12-06-117 Hall-B

$$\Delta_{2F} = 3\sqrt{2}\hat{q}_0 r_0 A^{1/3}/4$$

$$\frac{\langle\cos\phi\rangle_{UU}^{eA}}{\langle\cos\phi\rangle_{UU}^{eN}} \approx \frac{\langle\sin\phi\rangle_{LU}^{eA}}{\langle\sin\phi\rangle_{LU}^{eN}} \approx \frac{\alpha}{\alpha + \Delta_{2F}} = \mathbf{f}_s$$

Contalbrigo M.

MENU2016, 30th July 2016, Kyoto

Medium modification

Contalbrigo M.

MENU2016, 30th July 2016, Kyoto

20

STAR

Low-x Physics

Interplay of the data cut at low Q^2 and impact on gluon at low x

MENU2016, 30th July 2016, Kyoto

QCD Phase Diagram

$x \log, Q^2$ not too high:

- partonic k_T may become important!
 - are (perturbative) parton showers enough to describe this?
 - or does one need something more?
 k_T-dependent parton densities?

BFKL must be the correct theory of low-x QCD

It naturally incorporates k_T -unintegrated PDFs

Mechelen at DIS2014: no clear evidence of BFKL in experimental data

Gluon TMDs

Starting distribution for gluons at q_0

$$x\mathcal{A}_0(x,k_{\perp}) = Nx^{-B} \cdot (1-x)^C (1-Dx+E\sqrt{x}) \exp[-k_t^2/\sigma^2]$$

CCFM (BFKL like) evolution + Herafitter package

 $\sigma^2 = q_0^2 / 2$

Parton Polarization

Helicity

MENU2016, 30th July 2016, Kyoto

Helicity @ JLab12

MENU2016, 30th July 2016, Kyoto

Transversity

quark polarisation

n polarisation	N/q	U	L	Т
	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
nucleo	Т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h_1, h_{1\mathrm{T}}^\perp$

Transversity:

different from helicity distribution as rotation and boost do not commute

- sensitive to the relativistic effects
- related to the tensor charge
- non-singlet type evolution
- chirally-odd
 - it requires a chirally-odd fragmentation

Collins function: a spin- p_T correlator in fragmentation

Transversity & Collins Evidences

Fragmentation Functions @ B-factories

Crucial to seek un-integrated FFs at e^+e^- machines for

- evolution
- flavor separation

The Collins fragmentation analysis provides a benchmark

Di-Hadron Channel

Di-Hadron Channel

Contalbrigo M.

Transversity Signals

Transversity & Tensor Charge

Distributions:

Charges:

$$\delta q ~\equiv~ \int_0^1 dx \left[\Delta_T q(x) - \Delta_T ar q(x)
ight]$$

How well is Soffer bound know at large x ?

0.1

х

0.3

1

0.01

0.03

0.0

-0.1

-0.2

Kang et al.

Pavia

(DiFF)

Transversity @ JLab12

Contalbrigo M.

Asymmetry $\pi^{\scriptscriptstyle 1}$

Transversity @ JLab12

Spin-Orbit Effects

Transverse Momentum Dependent Distr.

quark polarisation

E	N/q	U	L	Т
isatior	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
n polar	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
nucleoi	т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{ m ot}$

Off-diagonal elements:

Interference between wave functions with different angular momenta: testing QCD at the amplitude level

T-odd elements:

 Sign change between DY and SIDIS Generalized universality of TMDs

Related to:

- Parton Spin-Orbit effects: may explain pp SSA & DY Lam-Tung
- ✓ Parton Orbital motion

MENU2016, 30th July 2016, Kyoto

Transverse Momentum Dependent Distr.

quark polarisation

E	N/q	U	L	Т
isatior	U	$f_{_{I}}$		$\boldsymbol{h}_{I}^{\perp}$
ר polar	L		g_1	$oldsymbol{h}_{1L}^{\perp}$
nucleoi	Т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Off-diagonal elements:

Interference between wave functions with different angular momenta: testing QCD at the amplitude level

T-odd elements:

 Sign change between DY and SIDIS Generalized universality of TMDs

Related to:

- Parton Spin-Orbit effects: may explain pp SSA & DY Lam-Tung
- ✓ Parton Orbital motion

MENU2016, 30th July 2016, Kyoto

Boer-Mulders Signals

Contalbrigo M.

Azimuthal Modulations of F_{UU}

$$F_{UU}^{\cos\phi} \propto [f_1 D_1 + \ldots] / Q$$

 \overline{Z}

Boer-Mulders spin-orbit effect

 $F_{UU}^{\cos 2\phi} \propto h_1^{\perp} H_1^{\perp} + [f_1 D_1 + ...] / Q^2$

Ζ

Drell-Yan Ongoing Studies

Transverse Momentum Dependent Distr.

quark polarisation

_	N/q	U	L	Т
isatior	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
n polar	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
nucleor	т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Off-diagonal elements:

Interference between wave functions with different angular momenta: testing QCD at the amplitude level

T-odd elements:

 Sign change between DY and SIDIS Generalized universality of TMDs

Related to:

- Parton Spin-Orbit effects: may explain pp SSA & DY Lam-Tung
- ✓ Parton Orbital motion

MENU2016, 30th July 2016, Kyoto

Sivers Signals

$$\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$$

Sivers from polarized SIDIS

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

May generate the misterious hadronic SSA

Contalbrigo M.

Sivers Signals

Toward multiD analyses

Contalbrigo M.

MENU2016, 30th July 2016, Kyoto

The Sivers Function

Sivers in the Sea ?

PGF @ COMPASS: gluon Sivers from deuterium and proton targets

Sivers Mapping

Contalbrigo M.

MENU2016, 30th July 2016, Kyoto

Sivers Sign Change

Weak boson production p p \rightarrow WX @ STAR

Solid line: assumption of sign change for Sivers Dashed line: assumption of no sign change for Sivers KQ prediction (unevolved) EIKV prediction (largest predicted evolution effect)

Kang and Qiu, [PRL 103 (2009) 172001] Echevarria++, [PRD 89 (2014) 074013]

Sivers Sign Change

Drell-Yan reaction pp \rightarrow eeX at COMPASS

Conclusions

The last decade provided many evidences that correlation of partonic transverse degrees of freedom in the nucleon do exist and manifest in hadronic interactions

Next step: Moving from phenomenology to rigorous treatment (predictive power)

New data coming from SIDIS, DY, e+e- and pp reactions should allow to:

- Constrain models in the valence region
- Test factorization, universality and evolution
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations

A comprehensive study provides access to the peculiar dynamics of the QCD confined world

Higher-twists

 A_{III} is proportional to the structure function

 $F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp}D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right]$

e(x): twist-3 PDF sensitive to qGq correlations "transverse force"

Contalbrigo M.