

Review of GPDs and TMDs

Jianwei Qiu Brookhaven National Laboratory Stony Brook University

Why TMDs and GPDs?

Transverse momentum dependent parton distribution functions (TMDs), and generalized parton distributions (GPDs) encode rich and unique information on confined motion, and spatial distribution of quarks and gluons inside a hadron, respectively

(Gateway to hadron's 3D partonic structure!)

How to "see" and quantify hadron structure?

□ Our understanding of hadron evolves

1970s

1980s/2000s

Now

Nucleon is a strongly interacting, relativistic bound state of quarks and gluons

□ Challenge:

No modern detector can see quarks and gluons in isolation!

Question:

How to quantify the hadron structure if we cannot see quarks and gluons? *We need the probe!*

□ Answer:

QCD factorization! *Not exact, but, controllable approximation!*

QCD Factorization: connecting parton to hadron

QCD Factorization: connecting parton to hadron

QCD factorization works!

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)

QCD factorization works!

Our knowledge on hadron structure?

- QCD has been extremely successful in interpreting and predicting high energy experimental data!
- But, we still do NOT know much about hadron structure – work just started!

□ High energy probes "see" the **boosted** partonic structure:

Confined motion: $1/R \sim \Lambda_{\rm QCD} \ll Q$ is too week to be relevant

Two-momentum-scale observables

 $xp_{\star}k_{\rm T}$

Х

□ Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{ m QCD}$

 \diamond "Soft" scale: Q_2 could be more sensitive to hadron structure, e.g., confined motion

Two-scale observables with the hadron broken:

A Natural observables with TWO very different scales

TMD factorization: partons' confined motion is encoded into TMDs

Two-momentum-scale observables

 xp_k_T

Х

□ Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{ m QCD}$

Two-scale observables with the hadron unbroken:

♦ Natural observables with TWO very different scales

 \diamond GPDs: Fourier Transform of t-dependence gives spatial b_T-dependence

Unified view of nucleon structure

Unified view of nucleon structure

□ Note:

- Partons' confined motion and their spatial distribution are unique – the consequence of QCD
- ♦ But, the TMDs and GPDs that represent them are not unique!
 - Depending on the definition of the Wigner distribution and QCD factorization to link them to physical observables

Position $\Gamma \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

Questions/issues for TMDs

□ Non-perturbative definition:

 $\diamond\,$ In terms of matrix elements of parton correlators:

$$\Phi^{[U]}(x, p_T; n) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P, S | \overline{\psi}(0) U(0, \xi) \psi(\xi) | P, S \rangle_{\xi^+ = 0}$$

 $\mathbf{A}\psi_i(\boldsymbol{\xi})$

P

 $\Phi(p;P)$

 $\psi_{j}(0)$

♦ Depends on the choice of the gauge link:

 \diamond Decomposes into a list of TMDs:

Questions/issues for TMDs

□ Non-perturbative definition:

♦ In terms of matrix elements of parton correlators:

$$\Phi^{[U]}(x, p_T; n) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P, S | \overline{\psi}(0) U(0, \xi) \psi(\xi) | P, S \rangle_{\xi^+ = 0}$$

 $\wedge \psi_i(\xi)$

P

 $\psi_i(0)$

 $\Phi\left(p;P
ight)$

♦ Depends on the choice of the gauge link:

♦ Decomposes into a list of TMDs:

IF we knew proton wave function, this definition gives "unique" TMDs!
 But, we do NOT know proton wave function (may calculate it using BSE?)
 TMDs defined in this way are NOT direct physical observables!

Questions/issues for TMDs

Perturbative definition – in terms of TMD factorization:

TMD fragmentation

Extraction of TMDs:

TMD parton distribution

 $\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f(x, k_\perp) \otimes \mathcal{D}_{f \to h}(z, p_\perp) \otimes \mathcal{S}(k_{s\perp}) + \mathcal{O}\left[\frac{P_{h\perp}}{O}\right]$

TMDs are extracted by fitting DATA using the factorization formula (approximation) and the perturbatively calculated $\hat{H}(Q;\mu)$.

Extracted TMDs are valid only when the <p2> << Q²

TMDs: confined motion, its spin correlation

□ Power of spin – many more correlations:

SIDIS is the best for probing TMDs

□ Naturally, two scales & two planes:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

□ Separation of TMDs:

Hard, if not impossible, to separate TMDs in hadronic collisions

Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

Modified universality for TMDs

Definition:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

Gauge links:

□ Process dependence:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

Collinear factorized PDFs are process independent

Critical test of TMD factorization

□ Parity – Time reversal invariance:

 $f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},-\vec{S})$

Definition of Sivers function:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) \equiv f_{q/h}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/h^{\uparrow}}(x,k_{\perp})\,\vec{S}\cdot\hat{p}\times\hat{\mathbf{k}}_{\perp}$$

□ Modified universality:

$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x,k_{\perp})$$

The spin-averaged part of this TMD is process independent, but, spin-averaged Boer-Mulder's TMD requires the sign change! Same PT symmetry examination needs for TMD gluon distributions!

Global QCD analysis: extraction of TMDs

QCD TMD factorization:

- Connect cross sections, asymmetries to TMDs
- ♦ Factorization is known or expected to be valid for SIDIS, Drell-Yan (Y*, W/Z, H⁰,...), 2-Jet imbalance in DIS, ...

Same level of reliability as collinear factorization for PDFs, up to the sign change

QCD evolution of TMDs:

- TMDs evolve when probed at different momentum scales
- \diamond Evolution equations are for TMDs in b_T-space (Fourier Conjugate of k_T)

FACT: QCD evolution does NOT fully fix TMDs in momentum space, even with TMDs fixed at low Q – large b_T -input!!!

♦ Very different from DGLAP evolution of PDFs – in momentum space

FACT: QCD evolution uniquely fix PDFs at large Q, once the PDFs is determined at lower Q – linear evolution in momentum space

□ Challenges:

Predictive power, extraction of hadron structure, ...

Evolution of Sivers function

Aybat, Collins, Qiu, Rogers, 2011

Up quark Sivers function:

Very significant growth in the width of transverse momentum

Different fits – different Q-dependence

Aybat, Prokudin, Rogers, 2012:

No disagreement on evolution equations!

Issues: Extrapolation to non-perturbative large b-region Choice of the Q-dependent "form factor"

"Predictions" for A_N of W-production at RHIC?

□ Sivers Effect:

See also talk by Marcia Quaresma on Wed. for COMPASS

- Quantum correlation between the spin direction of colliding hadron and the preference of motion direction of its confined partons
- QCD Prediction: Sign change of Sivers function from SIDIS and DY

□ Current "prediction" and uncertainty of QCD evolution:

TMD collaboration proposal: Lattice, theory & Phenomenology RHIC is the excellent and unique facility to test this (W/Z – DY)!

What happened?

Is the log(Q) dependence sufficient? Choice of $g_2 \& b_*$ affects Q-dep. The "form factor" and b_* change perturbative results at small b_T !

Q-dependence of the "form" factor

Q-dependence of the "form factor" :

Konychev, Nadolsky, 2006

At Q ~ 1 GeV, $\ln(Q/Q_0)$ term may not be the dominant one! $\mathcal{F}^{NP} \approx b^2(a_1 + a_2 \ln(Q/Q_0) + a_3 \ln(x_A x_B) + ...) + ...$ Power correction? (Q₀/Q)ⁿ-term? Better fits for HERMES data?

Parton k_T at the hard collision

\Box Sources of parton k_T at the hard collision:

 \Box Large k_T generated by the shower (caused by the collision):

- Q²-dependence linear evolution equation of TMDs in b-space
- $\diamond\,$ The evolution kernels are perturbative at small b, but, not large b

The nonperturbative inputs at large b could impact TMDs at all Q²

□ Challenge: to extract the "true" parton's confined motion:

- Separation of perturbative shower contribution from nonperturbative hadron structure – not as simple as PDFs
- ♦ Role of lattice QCD? Task of the DOE supported TMD collaboration

Hint of the sign change: A_N of W production

Data from STAR collaboration on A_N for W-production are consistent with a sign change between SIDIS and DY

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

Boosted 3D nucleon structure

□ High energy probes "see" the boosted partonic structure:

JLab12 for large-x, EIC for medium to small-x

GPDs – its role in solving the spin puzzle

Quark "form factor":

See also Hatta's talk on Tuesday

$$\begin{split} F_q(x,\xi,t,\mu^2) &= \int \frac{d\lambda}{2\pi} e^{-ix\lambda} \underbrace{P'}_{Q} \bar{\psi}_q(\lambda/2) \frac{\gamma \cdot n}{2P \cdot n} \psi_q(-\lambda/2) |P\rangle \\ &\equiv H_q(x,\xi,t,\mu^2) \left[\bar{\mathcal{U}}(P') \gamma^{\mu} \mathcal{U}(P) \right] \frac{n_{\mu}}{2P \cdot n} \\ &+ E_q(x,\xi,t,\mu^2) \left[\bar{\mathcal{U}}(P') \frac{i\sigma^{\mu\nu}(P'-P)_{\nu}}{2M} \mathcal{U}(P) \right] \frac{n_{\mu}}{2P \cdot n} \\ \text{with} \quad \xi = (P'-P) \cdot n/2 \text{ and } t = (P'-P)^2 \Rightarrow -\Delta_{\perp}^2 \text{ if } \xi \to 0 \\ &\tilde{H}_q(x,\xi,t,Q), \quad \tilde{E}_q(x,\xi,t,Q) \\ \text{Different quark spin projection} \\ \text{I Total quark's orbital contribution to proton's spin:} \quad \text{Ji, PRL78, 1997} \\ J_q &= \frac{1}{2} \lim_{t \to 0} \int dx \, x \left[H_q(x,\xi,t) + E_q(x,\xi,t) \right] \\ &= \frac{1}{2} \Delta q + L_q \end{split}$$

□ Connection to normal quark distribution:

 $H_q(x,0,0,\mu^2) = q(x,\mu^2)$ The limit when $\xi \to 0$

Exclusive DIS: Hunting for GPDs

□ Experimental access to GPDs:

Mueller et al., 94; Ji, 96; Radyushkin, 96

JLab12, COMPASS-II, EIC

♦ Diffractive exclusive processes – high luminosity:

DVCS: Deeply virtual Compton Scattering **DVEM:** Deeply virtual exclusive meson production

No factorization for hadronic diffractive processes – EIC is ideal

D Much more complicated – (x, ξ , t) variables:

Challenge to derive GPDs from data

Great experimental effort:

HERA, HERMES, COMPASS, JLab

Deep virtual Compton scattering

The LO diagram:

 $\xi = Q^2 / (2\bar{P} \cdot q)$ $Y' = P + \Delta$

□ Scattering amplitude:

$$T^{\mu\nu}(P,q,\Delta) = -\frac{1}{2}(p^{\mu}n^{\nu} + p^{\nu}n^{\mu} - g^{\mu\nu})\int dx \left(\frac{1}{x - \xi/2 + i\epsilon} + \frac{1}{x + \xi/2 + i\epsilon}\right)$$

$$\times \left[H(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\not\#U(P) + E(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\frac{i\sigma^{\alpha\beta}n_{\alpha}\Delta_{\beta}}{2M}U(P)\right]$$

$$-\frac{i}{2}\epsilon^{\mu\nu\alpha\beta}p_{\alpha}n_{\beta}\int dx \left(\frac{1}{x - \xi/2 + i\epsilon} - \frac{1}{x + \xi/2 + i\epsilon}\right)$$

$$\times \left[\tilde{H}(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\not\#\gamma_{5}U(P) + \tilde{E}(x,\Delta^{2},\Delta\cdot n)\frac{\Delta\cdot n}{2M}\bar{U}(P')\gamma_{5}U(P)\right]$$

$$\int \frac{d\lambda}{2\pi}e^{i\lambda x}\langle P'|\bar{\psi}(-\lambda n/2)\gamma^{\mu}\psi(\lambda n/2)|P\rangle = H(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\gamma^{\mu}U(P)$$

$$+E(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2M}U(P) + \dots$$

$$\int \frac{d\lambda}{2\pi}e^{i\lambda x}\langle P'|\bar{\psi}(-\lambda n/2)\gamma^{\mu}\gamma_{5}\psi(\lambda n/2)|P\rangle = \tilde{H}(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\gamma^{\mu}\gamma_{5}U(P)$$

$$+\tilde{E}(x,\Delta^{2},\Delta\cdot n)\bar{U}(P')\frac{\gamma_{5}\Delta^{\mu}}{2M}U(P) + \dots$$

GPDs: just the beginning

DVCS @ EIC

Cross Sections: γ*+p→γ+p $\gamma^* + p \rightarrow \gamma + p$ 10 20 GeV on 250 GeV 5 GeV on 100 GeV 103 dr_{DVCS}/dt (pb/GeV²) ∫Ldt = 10 fb⁻¹ do_{ovcs}/dt (pb/GeV²) 102 10 0.1 0.2 0.4 1.2 1.6 0.2 0.6 0.8 1.4 0.4 0.8 1.2 1.4 1.6 0 0 0.6 Itl (GeV²) Itl (GeV²) □ Spatial distributions: 0.6 0.01 0.02 0.5 0.8 X₆ F(x₆, b₇) (fm⁻²) (s F(x₆, b₇) (fm⁻²) 0.01 0.005 0.4 0.6 0.3 0.4 Ó 1.4 1.8 1.8 1.4 1.6 1.8 0.2 0.2 0.004 < x_B < 0.0063 $0.1 < x_B < 0.16$ 0.1 10 < Q²/GeV² < 17.8 O²/GeV² < 17.8 0 0 0.8 1.2 1.6 0.2 0.4 0.6 0.8 1.2 -1.6 0.2 0.6 14 4 0 0.4 0 br (fm) br (fm) Radius of quark density (x)!

Spatial distribution of gluons

Spatial distribution of gluons

Model dependence – parameterization?

EIC simulation

Unified view of nucleon structure

Position $\Gamma \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

PDFs, TMDs, GPDs, and hadron structure

□ What do we need to know for full hadron structure?

 \Rightarrow In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements

with ALL possible operators ${\cal O}(\overline{\psi},\psi,A^{\mu})$

- In fact: None of these matrix elements is a direct physical observable in QCD color confinement! need probes!!!
- In practice: Accessible hadron structure
 = hadron matrix elements of quarks and gluons, which
 - 1) can be related to physical cross sections of hadrons and leptons with controllable approximation factorization;
 - 2) can be calculated in lattice QCD

Multi-parton correlations – beyond single parton distributions:

Summary

TMDs and GPDs are NOT direct physical observables
 – could be defined differently

□ Knowledge of nonperturbative inputs at large b_T is crucial in determining the TMDs from fitting the data

QCD factorization is necessary for any controllable "probe" for hadron's quark-gluon structure!

□ Jlab12, COMPASS, ... will provide rich information on hadron structure via TMDs and/or GPDs in years to come!

EIC is a ultimate QCD machine, and will provide answers to many of our questions on hadron structure, in particular, the confined transverse motions (TMDs), spatial distributions (GPDs), and multi-parton correlations, ...

Thank you!

Backup slides

Evolution equations for TMDs

□ TMDs in the b-space:

J.C. Collins, in his book on QCD

□ Collins-Soper equation:

 $\tilde{K}(b_T;\mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln\left(\frac{\tilde{S}(b_T;y_s,-\infty)}{\tilde{S}(b_T;+\infty,y_s)}\right)$

Renormalization of the soft-factor

$$\zeta_F = M_P^2 x^2 e^{2(y_P - y_s)}$$

Introduced to regulate the rapidity divergence of TMDs

□ RG equations:

$$\frac{d\tilde{K}(b_T;\mu)}{d\ln\mu} = -\gamma_K(g(\mu))$$

Wave function Renormalization

Evolution equations are only valid when $b_T << 1/\Lambda_{QCD}$!

Need information at large b_{T}

$$\frac{d\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_{F})}{d\ln\mu} = \gamma_{F}(g(\mu);\zeta_{F}/\mu^{2})\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_{F})$$

 $\frac{\partial F_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)$

□ Momentum space TMDs:

$$F_{f/P^{\uparrow}}(x, \mathbf{k}_{\mathrm{T}}, S; \mu, \zeta_F) = \frac{1}{(2\pi)^2} \int d^2 \mathbf{b}_T \, e^{i\mathbf{k}_T \cdot \mathbf{b}_T} \, \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu, \zeta_F)$$

Evolution equations for Sivers function

Sivers function:

Aybat, Collins, Qiu, Rogers, 2011

$$F_{f/P^{\uparrow}}(x,k_T,S;\mu,\zeta_F) = F_{f/P}(x,k_T;\mu,\zeta_F) - F_{1T}^{\perp f}(x,k_T;\mu,\zeta_F) \frac{\epsilon_{ij}k_T^i S^j}{M_p}$$

□ Collins-Soper equation:

$$\frac{\delta \ln \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu)$$

□ RG equations:

 $-\tilde{-}i + f_{i}$

Its derivative obeys the CS equation

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) \equiv \frac{\partial \tilde{F}_{1T}^{\perp f}(x, b_T; \mu, \zeta_F)}{\partial b_T}$$

□ Sivers function in momentum space:

$$F_{1T}^{\perp f}(x, k_T; \mu, \zeta_F) = \frac{-1}{2\pi k_T} \int_0^\infty db_T \, b_T J_1(k_T b_T) \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F)$$

JI, Ma, Yuan, 2004 Idilbi, et al, 2004, Boer, 2001, 2009, Kang, Xiao, Yuan, 2011 Aybat, Prokudin, Rogers, 2012 Idilbi, et al, 2012, Sun, Yuan 2013, ...

Extrapolation to large b_T

Nonperturbative fitting functions

Various fits correspond to different choices for $g_{f/P}(x, b_T)$ and $g_K(b_T)$ e.g. $g_{f/P}(x, b_T) + g_K(b_T) \ln \frac{Q}{Q_0} \equiv -\left[g_1 + g_2 \ln \frac{Q}{2Q_0} + g_1 g_3 \ln(10x)\right] b_T^2$

Different choice of g₂ & b_{*} could lead to different over all Q-dependence!