

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

XYZ STATES AT BESIII

Bin Wang (on the behalf of BESIII collaboration) Institute of High energy Physics, CAS

MENU2016, Kyoto, Japan, July 25-30, 2016

Outline

➢Introduction ≻Hadrons Charmonium and XYZ spectrum ► BESIII Data Samples for XYZ Study Results on X states Results on Y states Results on Z states Summary and Outlook

Introduction

Hadrons: naive and exotic

- Naive quark model:
 - 2 quarks: meson $(q\overline{q})$
 - 3 quarks: baryon (qqq)
- QCD predicts the exotic states:
 - Multiquark states: $N_{quarks} >= 4$
 - Molecule: bound state of hadrons
 - Hybrid: $N_{quarks} \ge 2 + gluon$
 - Glueball: $N_{quarks} = 0 (gg, ggg, ...)$

Charmonium and XYZ spectrum

Below open-charm threshold

 ✓ Good agreement between experimental measurements and theoretical predictions

> Above open-charm threshold

- Many expected states not discovered
- Many unexpected states observed:
 - charmonium in final states
 - no conventional charmonium states assignment
 - called charmonium-like or XYZ states

≻ To do list

 New decay modes of known charmonium(-like) states
 New charmonium(-like) states

BESIII Data Samples for XYZ Study (~5 fb⁻¹)

- > XYZ physics: $3.8 \sim 4.6$ GeV
- Integrated luminosity: ~5 fb⁻¹

Results on X states

> The first observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+ \pi^- J/\psi$

 $M = 3871.9 \pm 0.7 \pm 0.2 \text{ MeV/c}^2$, $\Gamma < 2.4 \text{ MeV}$, consistent with Belle's result

Suggestive of Y(4260)
$$\rightarrow \gamma X(3872)$$

>If $B(X(3872) \rightarrow \pi^+ \pi^- J/\psi) = 5\%$, $\mathcal{R} = \frac{Br(e^+ e^- \rightarrow \gamma X(3872))}{Br(e^+ e^- \rightarrow \pi^+ \pi^- J/\psi)} = 0.1$

$e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^-\gamma\chi_{c1}$

≻Observed a narrow resonance X(3823), a good candidate for $\psi(1^3D_2)$

► Dominant decay $\psi(1^3D_2) \rightarrow \gamma \chi_{C1}$, no obvious signal for $\psi(1^3D_2) \rightarrow \gamma \chi_{C2}$.

The production ratio
$$\mathcal{R} = \frac{\operatorname{Br}(X(3823) \to \gamma \chi_{C_2})}{\operatorname{Br}(X(3823) \to \gamma \chi_{C_1})} < 0.42 @ 90\% \text{ C.L, agree}$$

with $\mathcal{R}\sim 0.2$ prediction.

→ M = $3821.7\pm1.3\pm0.7$ MeV/c², $\Gamma < 16$ MeV, consistent with Belle's result → Both Y(4360) and $\psi(4415)$ line shape give reasonable description.

Results on Y states

>e⁺e⁻→ωχ_{c0} are observed at E_{cm}=4.23 (11.9σ) and 4.26 GeV (5.5σ).

≻Using scan data over 4.21 and 4.42 GeV, cross section peak near 4.23 GeV, fit with a single BW:

 $M = 4230 \pm 8 \pm 6 \text{ MeV/c}^2$, $\Gamma = 38 \pm 12 \pm 2 \text{ MeV} (>9\sigma)$

≻A new structure?

 $\succ \psi(4S)$? Tetraquark? Threshold effect?

constructive, destructive

11

$e^+e^- \rightarrow \pi^+\pi^-h_c$

> Data samples:

- > XYZ samples (5.26 fb⁻¹):
 - 17 energy points from 3896 MeV to 4600 MeV
- > R-scan data samples (0.51 fb⁻¹):

62 energy points from 4097 MeV to 4587 MeV

Decay channels:

 $e^+e^- \rightarrow \pi^+\pi^-h_c, h_c \rightarrow \gamma\eta_c, \eta_c \rightarrow X_i, X_i$ signifies 16 hadronic decay channels

$$\sigma(m) = \left| B_1(m) \sqrt{\frac{P(m)}{P(M_1)}} + e^{i\phi} B_2(m) \sqrt{\frac{P(m)}{P(M_2)}} \right|^2$$

 $B_i(m)$: constant width Breit-Wigner function

P(m): 3-body phase space factor

 ϕ : relative phase between two resonances

significance of two structures assumption over one structure $> 10\sigma$

	M (MeV/c ²)	Γ_{tot} (MeV)	$\Gamma_{ee} \bullet Br$ (eV)	φ (rad)
7(4220)	4218.4±4.0±0.9	66.0±9.0±0.4	4.6±4.1±0.8	
7(4390)	4391.6±6.3±1.0	139.5±16.1±0.6	11.8±9.7±1.9	3.1±1.5±0.2

Results on Z states

Discovery of $Z_c(3900)^{\pm/0}$

>Charged charmonium-like structure (>10 σ)
>Decay to J/ψ (cc̄) and electric charge (ud̄ or dū)
>M = 3899.0±3.6±4.9 MeV/c², Γ = 46±10±20 MeV
>σ(e⁺e⁻→π⁺π⁻J/ψ) = 62.9±1.9±3.7 pb at 4.26 GeV
> $\frac{\sigma(e^+e^- → \pi^+ z_c(3900)^{\pm} → \pi^+ \pi^- J/ψ)}{\sigma(e^+e^- → \pi^+ \pi^- J/ψ)} = 21.5±3.3±7.5 %$ >The first Z_c state observed by more than one
experiment (Belle and CLEO-c)!

> Neutral charmonium-like structure (10.4 σ)

➤ Using 3 data samples (~2.5 fb⁻¹)

Evidence with 3.7σ by using CLEO-c data

 $M = 3894.8 \pm 2.3 \pm 3.2 \text{ MeV/c}^2, \Gamma = 29.6 \pm 8.2 \pm 8.2 \text{ MeV}$

≻An iso-spin triplet is established!

Phys. Rev. D 92, 092006 (2015)

State	Mass (MeV/c ²)	Width (MeV)
$Z_c(3885)^{\pm}$ (ST)	$3883.9 \pm 1.5 \pm 4.2$	$24.8 \pm 3.3 \pm 11.0$
$Z_c(3885)^{\pm}$ (DT)	$3881.7 \pm 1.6 \pm 1.6$	$26.6 \pm 2.0 \pm 2.1$
Weighted average	$3882.2 \pm 1.1 \pm 1.5$	$26.5 \pm 1.7 \pm 2.1$
$Z_c(3885)^0$ (DT)	$3885.7^{+4.3}_{-5.7} \pm 8.4$	$35^{+11}_{-12} \pm 15$

- Good agreement between ST and DT method
- Good agreement between charged state and neutral state
- Another iso-spin triplet is established!

$$\succ Z_c(3885) = Z_c(3900)?$$

Tetraquark? Molecule state?

 $Z_{c}(4025)^{\pm/0} \rightarrow (D^{*}\overline{D}^{*})^{\pm/0}$

≻Z_c(4025)^{±/0} observed
≻Another iso-spin triplet is established!

State	Mass (MeV/c ²)	Width (MeV)
$Z_c(4025)^{\pm}$	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$
$Z_c(4025)^0$	$4025.5^{+2.0}_{-4.7}\pm3.1$	$23.0 \pm 6.0 \pm 1.0$

Summary Z states at BESIII

 $\geq Z_c(3885)^{\pm} \text{ mass is about } 2.6\sigma \text{ lower and the width } 1.5\sigma \text{ lower than } Z_c(3900)^{\pm} \text{ value. If } Z_c(3885)$ $= Z_c(3900), \frac{\Gamma(Z_c(3885)^{\pm} \rightarrow (D\bar{D}^*)^{\pm})}{\Gamma(Z_c(3900)^{\pm} \rightarrow \pi^{\pm} \text{J/\psi})} = 6.2 \pm 1.1 \pm 2.7, \text{ coupling to } D\bar{D}^* \text{ is larger than to } \pi \text{J/\psi};$ $\geq Z_c(4020)^{\pm} \text{ and } Z_c(4025)^{\pm} \text{ mass and width are consistent within } 1.5\sigma. \text{ If } Z_c(4020) = Z_c(4025),$ $\frac{\Gamma(Z_c(4025)^{\pm} \rightarrow (D^*\bar{D}^*)^{\pm})}{\Gamma(Z_c(4020)^{\pm} \rightarrow \pi^{\pm} h_c)} = 12 \pm 5, \text{ coupling to } D^*\bar{D}^* \text{ is larger than to } \pi h_c.$

Summary & Outlook

- Present the recent results of XYZ states at BESIII
 - **?** The nature of XYZ states is unclear
 - **?** The relations between XYZ states are unclear
 - ? Some expected states and decay modes are missing
- ►BESIII will collect more data for XYZ study
- ≻More exciting results of BESIII will come up soon

Thank You!