$\bar{D}\Sigma_c^*$ and $\bar{D}^*\Sigma_c$ interactions and LHCb hidden-charmed pentaquarks

Jun He

Institute of Modern Physics, Chinese Academy of Sciences

MENU2016, Kyoto, July 2016

→ Ξ →

Outline

Introduction

- Studies about pentaquarks before LHCb experiment
- LHCb Experiment
- Theoretical studies after LHCb experiment

2 LHCb pentaquarks as hadronic molecular states

- Hadronic molecular state
- $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
- Qusipotential Bethe-Salpeter equation

3 Results

- Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
- Could P-wave state be observed in experiment?
- Discussion and Summary

Outline

Introduction

- Studies about pentaquarks before LHCb experiment
- LHCb Experiment
- Theoretical studies after LHCb experiment

LHCb pentaquarks as hadronic molecular states

- Hadronic molecular state
- $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
- Qusipotential Bethe-Salpeter equation

Results

• Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions

Jun He

- Could P-wave state be observed in experiment?
- Discussion and Summary

・ 同 ト ・ ヨ ト ・ ヨ ト

LHCb pentaquarks as hadronic molecular states Results Studies about pentaquarks before LHCb experiment LHCb Experiment Theoretical studies after LHCb experiment

Studies about pentaquarks before LHCb experiment

Gell-Mann and Zweig proposed not only the existence of the $q\bar{q}$ mesons and qqq baryons but also the possible existence of the tetraquarks and pentaquarks.

Gell-Mann, Phys. Lett. 8 (1964) 214

anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq), etc., while mesons are made out of (qq), (qq \bar{q}), etc. It is assuming that the lowest baryon configuration (qq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (qq) similarly gives

Zweig, CERN Report 8419/TH.401 (1964)

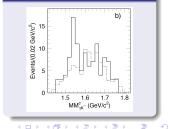
In general, we would expect that baryone are built not only from the product of three mess, AAA, but mlso from XAAAA, XAAAA, etc., where X denotes an anti-acce. Similarly, means exuld be formed from XA, XAAA etc. For the low mass means and baryone we will assume the simplest possibilities, XA and AAA, that is, "denote and tryge".

Theoretical studies

• The pentaquarks composed of light quarks:

Hogaasen and Sorba, Strotmann, Nucl. Phys. B145 (1978) 119.

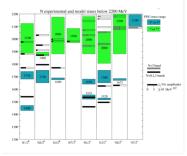
• Charmed Pentaquark:


Gignoux et al., PLB193(1987)323

Lipkin PLB195(1987)484

The name "pentaquark" was proposed.

•



LHCb pentaquarks as hadronic molecular states Results Studies about pentaquarks before LHCb experiment LHCb Experiment Theoretical studies after LHCb experiment

Theoretical predictions about hidden-charmed pentaquark

Hidden-charmed N^* above 4 GeV

Hadronic molecular state

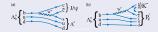
- Wu, Molina, Oset, and Zou, Phys.Rev.Lett.105 (2010) 232001
 Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV,
- Yang, Sun, JH, Liu, Zhu, Chin. Phys. C36 (2012) 6 The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon,
- Wang, Huang, Zhang, and Zou, Phys. Rev. C84 (2011) 015203

 $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}$ states in a chiral quark model

 Karliner, Rosner, Phys. Rev. Lett. 115 (2015) 122001
 New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules

Multiquark

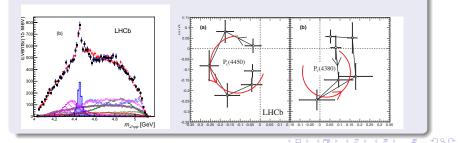
Yuan, Wei, JH, Xu and Zou, Eur.Phys.J. A48 (2012) 61
 Study of *qqqcc̄* five quark system with three kinds of quark-quark hyperfine interaction


< 6 >

医下子 医

LHCb pentaquarks as hadronic molecular states Results Studies about pentaquarks before LHCb experiment LHCb Experiment Theoretical studies after LHCb experiment

LHCb Experiment: $P_c(4450)$ and $P_c(4380)$


Observed in
$$J/\psi p$$
 channel of $\Lambda_b^0 \to J/\psi K^- p$ decay.

 $M = 4380 \pm 8 \pm 29$ MeV, $\Gamma = 205 \pm 18 \pm 86$ MeV. $M = 4449.8 \pm 1.7 \pm 2.5$ MeV, $\Gamma = 39 \pm 5 \pm 19$ MeV.

$P_{c}(4380)$	$P_{c}(4450)$	$\Delta(-2\ln\mathcal{L})$
$3/2^{-}$	$5/2^{+}$	0
$3/2^{+}$	$5/2^{-}$	0.9^{2}
$5/2^{+}$	$3/2^{-}$	2.3^{2}
		$> 5^2$

$J/\psi p$ invariant mass spectrum and Argand diagram

Jun He

 $\bar{D}\Sigma_{c}^{*}$ and $\bar{D}^{*}\Sigma_{c}$ interactions and LHCb hidden-charmed pentaquarks

LHCb pentaquarks as hadronic molecular states Results Studies about pentaquarks before LHCb experiment LHCb Experiment Theoretical studies after LHCb experiment

Theoretical studies after LHCb experiment

The LHCb experiment has been cited by more than 200 articles.

Pentaquark (a color singlet)

- Maiani, Polosa, Riquer, PLB749(2015)289
 The New Pentaquarks in the Diquark Model
- Lebed, PLB749 (2015) 454

The Pentaquark Candidates in the Dynamical Diquark Picture

• Wang, EPJC76 (2016)70 Analysis of $P_c(4380)$ and $P_c(4450)$ as pentaguark states in the diguark model

• . . .

Anomalous triangle singularity

- Liu, Wang, Zhao, PLB757(2016)231
 Understanding the newly observed heavy pentaquark candidates
- Mikhail Mikhasenko, arXiv:1507.06552
 A triangle singularity and the LHCb pentaguarks

• ...

S-wave molecular state : negative parity

- Roca, Nieves, Oset, PRD92(2015)094003 LHCb pentaquark as a $\bar{D}^* \Sigma_c - \bar{D}^* \Sigma^*$ molecular state
- Chen, Chen, Liu, Steele, Zhu, PRL115(2015)172001
 Towards exotic hidden-charm pentaquarks in QCD

• ...

P wave \rightarrow positive parity

Meissner and Oller, PLB751(2015)59
 Testing the \chi_c1p composite nature of the

 $P_c(4450)$

P-wave meson χ_{c1}

JH, PLB753 (2016) 547

 $\bar{D}\Sigma_c^*$ and $\bar{D}^*\Sigma_c$ interactions and the LHCb hidden-charmed pentaquarks

P-wave interaction

Outline

Introduction

- Studies about pentaquarks before LHCb experiment
- LHCb Experiment
- Theoretical studies after LHCb experiment

2 LHCb pentaquarks as hadronic molecular states

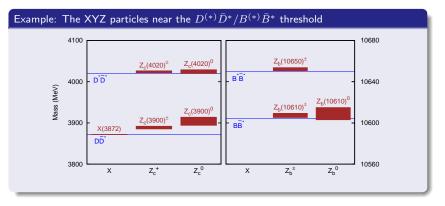
- Hadronic molecular state
- $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
- Qusipotential Bethe-Salpeter equation

Results

• Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions

Jun He

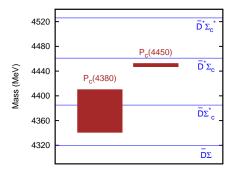
- Could P-wave state be observed in experiment?
- Discussion and Summary


- 4 回 ト - 4 回 ト

Introduction LHCb pentaquarks as hadronic molecular states Results $\begin{array}{l} \mbox{Hadronic molecular state}\\ \bar{D}\Sigma_c^*, \ \bar{D}^*\Sigma_c \ \mbox{and} \ \bar{D}^*\Sigma_c^* \ \mbox{interactions}\\ \mbox{Qusipotential Bethe-Salpeter equation} \end{array}$

Hadronic molecular state

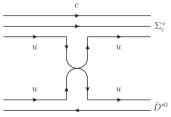
- Many exotic structures are close to thresholds of two hadrons.
- Theoretically, hadron-hadron interaction can produce bound state or resonance near the threshold


The exotic structure in experiment \leftrightarrow molecular state from hadron-hadron interaction

Introduction LHCb pentaquarks as hadronic molecular states Results $\begin{array}{l} \mbox{Hadronic molecular state}\\ \bar{D}\Sigma_c^*, \ \bar{D}^*\Sigma_c \ \mbox{and} \ \bar{D}^*\Sigma_c^* \ \mbox{interactions}\\ \mbox{Qusipotential Bethe-Salpeter equation} \end{array}$

The LHCb hidden-charmed pentaquarks

- $P_c(4380)$ and $P_c(4450) \leftrightarrow \overline{D}\Sigma_c^*(2520)$ and $\overline{D}^*\Sigma_c(2455)$ thresholds
- Mass gaps: about 5 MeV and 15 MeV


- S wave provides only negative parity state.
- $\bullet\,$ It conflicts with the LHCb experiment: opposite parities for two P_c states.

Jun He

Higher-wave interaction will be included.

LHCb pentaquarks as hadronic molecular states Results Hadronic molecular state $\bar{D}\Sigma_c^*, \bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Qusipotential Bethe-Salpeter equation

$\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions

No OZI suppression \rightarrow Heavy meson (J/ψ) exchange suppressed \rightarrow Only light meson exchange considered

Vertex of charmed baryon and light meson

$$\begin{split} \mathcal{L}_{\mathcal{B}_{6}\mathcal{B}_{6}\mathbb{P}} &= -\frac{g_{1}}{4f_{\pi}} \, \epsilon^{\alpha\beta\lambda\kappa} \langle \bar{\mathcal{B}}_{6} \stackrel{\leftrightarrow}{\partial}^{\kappa} \gamma_{\alpha} \gamma_{\lambda} \partial_{\beta}\mathbb{P} \, \mathcal{B}_{6} \rangle, \\ \mathcal{L}_{\mathcal{B}_{6}\mathcal{B}_{6}} \nabla_{\theta} &= -i\frac{\frac{\beta S g V}{2\sqrt{2}}}{3\sqrt{2}} \, \langle \bar{\mathcal{B}}_{6} \stackrel{\leftrightarrow}{\partial} \cdot \mathbb{V} \, \mathcal{B}_{6} \rangle \\ &- \frac{im \mathcal{B}_{6}\lambda S g V}{3\sqrt{2}} \, \langle \bar{\mathcal{B}}_{6} \gamma_{\mu} \gamma_{\nu} (\partial^{\mu}\mathbb{V}^{\nu} - \partial^{\nu}\mathbb{V}^{\mu}) \mathcal{B}_{6} \rangle, \\ \mathcal{L}_{\mathcal{B}_{6}\mathcal{B}_{6}\sigma} &= -\ell_{S} m \mathcal{B}_{6} \, \langle \bar{\mathcal{B}}_{6} \sigma \, \mathcal{B}_{6} \rangle, \end{split}$$

Vertex of anticharmed meson and light meson

$$\begin{split} \mathcal{L}_{\vec{\mathcal{P}}\vec{\mathcal{P}}\mathbb{V}} &= \frac{\beta g_{V}}{\sqrt{2}} \vec{\mathcal{P}}_{a}^{\dagger} \overleftarrow{\partial} \mu \vec{\mathcal{P}}_{b} \nabla_{ab}^{\mu}, \\ \mathcal{L}_{\vec{\mathcal{P}}\vec{\mathcal{P}}\sigma} &= -2g_{s} m_{\mathcal{P}} \vec{\mathcal{P}}_{b} \vec{\mathcal{P}}_{b}^{\dagger} \sigma, \\ \mathcal{L}_{\vec{\mathcal{P}}^{*}\vec{\mathcal{P}}^{*}\mathbb{P}} &= -\frac{g}{f_{\pi}} \epsilon_{\alpha \beta \lambda \kappa} \vec{\mathcal{P}}_{a}^{*\beta \dagger} \overleftarrow{\partial}^{\alpha} \vec{\mathcal{P}}_{b}^{*\kappa} \partial^{\lambda} \mathbb{P}_{ab}, \\ \mathcal{L}_{\vec{\mathcal{P}}^{*}\vec{\mathcal{P}}^{*}\mathbb{V}} &= -i \frac{\beta g_{V}}{\sqrt{2}} \vec{\mathcal{P}}_{a}^{*\dagger} \mu \overleftarrow{\partial}^{\nu} \vec{\mathcal{P}}_{b\mu}^{*} \mathbb{V}_{ab\nu} \\ &\quad -i 2\sqrt{2} m_{\mathcal{P}^{*}} \lambda g_{V} \vec{\mathcal{P}}_{a}^{*\dagger} \mu^{*} \vec{\mathcal{P}}_{b}^{*\nu} (\partial_{\mu} \mathbb{V}_{\nu} - \partial_{\nu} \mathbb{V}_{\mu})_{ab}, \\ \mathcal{L}_{\vec{\mathcal{P}}^{*}\vec{\mathcal{P}}^{*}\sigma} &= 2g_{s} m_{\mathcal{P}^{*}} \vec{\mathcal{P}}_{b}^{*\dagger} \sigma \end{split}$$

Jun He

Introduction LHCb pentaquarks as hadronic molecular states

Results

Hadronic molecular state $\overline{D}\Sigma_c^*, \overline{D}^*\Sigma_c$ and $\overline{D}^*\Sigma_c^*$ interactions Qusipotential Bethe-Salpeter equation

$\overline{D}\Sigma_c^*, \ \overline{D}^*\Sigma_c$ and $\overline{D}^*\Sigma_c^*$ potential

JH, PLB753(2016)547

The $\bar{D}\Sigma_c^*$ interaction

$$\begin{split} & \mathcal{V}_{\mathbb{V}} = i \frac{\beta g_{\mathbb{V}}^{T}}{2} \left[\frac{\beta S}{2} (k_{2} + k_{2}) \cdot (k_{1} + k_{1}^{T}) \Sigma_{e}^{\pm} \cdot \Sigma_{e}^{\pm} - m_{\Sigma_{e}^{\pm}} \lambda_{S} (\bar{\Sigma}^{\pm} \cdot q) \right. \\ & \left. \cdot \Sigma_{e}^{\pm} \cdot (k_{1} + k_{1}^{T}) - \Sigma_{e}^{\pm} \cdot (k_{1} + k_{1}^{T}) \Sigma_{e}^{\pm} \cdot q \right] P_{\mathbb{V}}(q^{2}), \\ & \mathcal{V}_{\sigma} = i 2\ell_{Sg,m} m_{D} m_{\Sigma_{e}^{\pm}} \Sigma_{e}^{\pm} \cdot \Sigma_{e}^{\pm} P_{\sigma}(q^{2}). \end{split}$$

The $\bar{D}^* \Sigma_c^*$ interaction

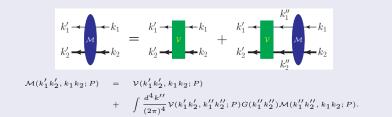
$$\begin{split} \mathcal{V}_{\mathbb{P}} &= -i \frac{3 g g_1}{4 f_\pi^2} \epsilon^{\alpha \beta \lambda \kappa} \tilde{D}_{\beta}^{*\dagger}(k_1 + k_1')_{\alpha} \tilde{D}_{\kappa}^{*} q_{\lambda} \\ & \cdot \quad \epsilon^{\alpha' \beta' \lambda' \kappa'}(k_2 + k_2')_{\kappa'} q_{\beta'} \Sigma_{\alpha \alpha'}^* \Sigma_{\alpha \lambda'}^* P_{\mathbb{P}}(q^2), \\ \mathcal{V}_{\mathbb{V}} &= i g_{\mathbb{V}}^2 \Big\{ - \frac{\beta \beta g_2}{4} (k_1 + k_1') \cdot (k_2 + k_2') \tilde{D}^{*\dagger} \cdot \tilde{D}^* \Sigma_{\alpha}^* \cdot \Sigma_{\alpha}^* \\ & + \quad 2 m_{\Sigma_{\alpha}} \epsilon^m D^* \lambda \lambda_S [\tilde{D}^{*\dagger} \cdot q(\Sigma_{\alpha}^* \cdot q\Sigma_{\alpha}^* - \tilde{D}^* - \Sigma_{\alpha}^* \cdot D^* \Sigma_{\alpha}^* \cdot q) \\ & - \quad \tilde{D}^* \cdot q(\Sigma_{\alpha}^* \cdot q\Sigma_{\alpha}^* \cdot D^{*\dagger} - \Sigma_{\alpha}^* \cdot D^{*\dagger} \Sigma_{\alpha}^* \cdot q) + \frac{m_{\Sigma_{\alpha}} \beta \lambda_S}{2} \\ & \cdot \quad [q^{\mu}(k_1 + k_1')^{\nu} - q^{\nu}(k_1 + k_1')\mu] \tilde{D}^{*\dagger} \cdot \tilde{D}^* \Sigma_{\alpha}^* \mu \Sigma_{\alpha}^* - \lambda \beta_S m_P \\ & \cdot \quad [q_{\mu}(k_1 + k_1')_{\nu} - q_{\nu}(k_1 + k_1')_{\mu}] D^{\mu\dagger} D^{\nu\nu} \Sigma_{\alpha}^* \cdot \Sigma_{\alpha}^* \right] \mathcal{P}_{\mathbb{V}}(q^2), \\ \mathcal{V}_{\sigma} &= \quad -i 2 g_s \ell_S m_{\tilde{D}^*} m_{\Sigma_{\alpha}} \Sigma_{\alpha}^* \cdot \Sigma_{\alpha}^* D^{*\dagger} \cdot D^* P_{\sigma}(q^2). \end{split}$$

The $\bar{D}^*\Sigma_c$ interaction

$$\begin{split} & \nabla_{\mathcal{P}} = (\frac{4g_{2}}{4}c_{\alpha}\beta_{\lambda\pi}\mathcal{D}^{+\beta^{\dagger}}(\mathbf{k}1 + \mathbf{k}_{1}^{\prime})^{\alpha}\mathcal{D}^{+\kappa}\mathbf{q}^{\lambda}e^{\alpha'\beta'\lambda'\kappa'}(\mathbf{k}2 + \mathbf{k}_{2}^{\prime})_{\kappa'} \\ & q_{\beta'} \, \mathcal{L}_{c} \, \gamma_{\alpha'}\gamma_{\lambda'} \, \mathcal{L}_{c} \, P_{V}(\mathbf{q}^{2}), \\ & \nabla_{V} = ig_{V}^{2} \left\{ \frac{\beta\beta_{S}}{4}(\mathbf{k}1 + \mathbf{k}_{1}^{\prime}) \cdot (\mathbf{k}2 + \mathbf{k}_{2}^{\prime})\mathcal{D}^{+\dagger} \cdot \mathcal{D}^{+} \mathcal{L}^{2} \mathcal{L}_{c} \mathcal{D}^{-\frac{1}{2}} \cdot \mathcal{D}^{+} + \lambda\beta_{S} m_{D} + \\ & \cdot (\mathbf{k}1 + \mathbf{k}_{1}^{\prime}) - q^{\nu}(\mathbf{k}1 + \mathbf{k}_{1}^{\prime})_{\mu} [\mathcal{D}^{+\dagger}\mathcal{D}^{+\nu} \, \mathcal{L}_{c} \mathcal{D}^{+} + \mathcal{D}^{+} + \lambda\beta_{S} m_{D} + \\ & \cdot [q_{\mu}(\mathbf{k}1 + \mathbf{k}_{1}^{\prime}) - q_{\nu}(\mathbf{k}1 + \mathbf{k}_{1}^{\prime})_{\mu}] \mathcal{D}^{\pm}\mathcal{D}^{\mu} \mathcal{D}^{\pm} \, \mathcal{L}_{c} \mathcal{D}^{-} - \frac{2m_{\Sigma}c}{3} \frac{m_{D} + \lambda\lambda_{S}}{3} \\ & \cdot \mathcal{L}_{c}[\gamma \cdot q(\boldsymbol{q}^{\mu}\gamma^{\nu} - q^{\nu}\gamma^{\mu}) - (\boldsymbol{q}^{\mu}\gamma^{\nu} - q^{\nu}\gamma^{\mu})\gamma + q|\mathcal{L}_{c}\mathcal{D}^{\dagger}_{\mu}\mathcal{D}^{+}_{\nu} \right\} \, \mathbb{P}(\mathbf{q}^{2}), \\ & \nabla_{\sigma} = i2g_{\delta} \mathcal{L}_{S} \, m_{D} + m_{\Sigma_{c}}^{+} \mathcal{L}_{S} \mathcal{L}_{S} \, \mathcal{L}_{c} \, \eta^{-1} + \mathcal{D}^{+} \mathcal{P}(\mathbf{q}^{2}). \end{split}$$

Form factor

Propagator:


$$\begin{array}{lll} P_{\mathbb{P}}(q^2) & = & \left(\frac{-1}{q^2 - m_\pi^2} + \frac{1}{6} \frac{1}{q^2 - m_\eta^2} \right) \\ P_{\mathbb{V}}(q^2) & = & \left(\frac{-1}{q^2 - m_\rho^2} - \frac{1}{2} \frac{1}{q^2 - m_\omega^2} \right) \\ P_{\sigma}(q^2) & = & \frac{1}{q^2 - m_\sigma^2} \,. \end{array}$$

A form factor is introduced to compensate the off-shell effect of exchange meson as $f(q^2)=(\frac{\Lambda^2}{\Lambda^2-q^2})^4$

Introduction LHCb pentaquarks as hadronic molecular states Results Hadronic molecular state $\bar{D}\Sigma_c^*, \bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Qusipotential Bethe-Salpeter equation

Bethe-Salpeter equation (BSE)

A 4D integral equation in Minkowski space

Reduction to a 3D integral equation

• Direct solution of the BSE is complicated and much computer time is required.

Jun He

- Integrate out the zero component of momentum $k^{\prime\prime}$, $k^{\prime\prime0}$.
- The 4D integral equation is reduced to a familiar 3D equation on 3-vector momentum $m{k}^{\prime\prime}.$

How to do it?

< ロ > < 同 > < 三 > < 三 >

-

Hadronic molecular state $\bar{D}\Sigma_c^*, \bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Qusipotential Bethe-Salpeter equation

Quaipotential approximation: 4D BSE \rightarrow 3D BSE

Gross, PRC26(1982)2203

The BSE is equivalent to a pair of equations

$$\mathcal{M} = U - UG_0 \mathcal{M}$$

$$U = V - V(G - G_0)U$$

Quasipotential approximation

Choose G_0 in a way that

- $G G_0$ is small, so $U \approx V$.
- k''^0 can be integrated out.
- G_0 satisfies the unitarity condition

Infinite choices:

- BSLT approximation
- K-matrix method
- Instantaneous approximation

The covariant spectator theory(CST)
$$G_0=2\pi i\frac{\delta^+(k_1^2-m_1^2)}{k_2^2-m_2^2}$$

- Maintains manifest covariance
- BS and CST are equivalent when both are solved exactly.
- Gives the correct "one body limit".
- Preserves cluster separability.
- converges more rapidly that the BSE.
- CST have been applied successfully to the study of Deuteron and the NN scattering.

The interested audience is referred to the works by Gross et al.

< 4 A >

LHCb pentaguarks as hadronic molecular states Results Qusipotential Bethe-Salpeter equation

Partial wave analysis: reduce 3D BSE to 1D BSE

JH, PRD90 (2014)076008

ъ

- The partial wave decomposition here is done into the quantum number J^P instead of usual orbital angular momentum L
- All partial waves based on L related to a certain J^P are included.
- Advantage: the experiment result is usually provided with spin parity J^P .

The BSE for a fixed spin parity J^P

$$\mathcal{M}^{J^P}_{\lambda\lambda'}(\mathbf{p},\mathbf{p}') \quad = \quad \mathcal{V}^{J^P}_{\lambda,\lambda'}(\mathbf{p},\mathbf{p}') + \sum_{\lambda''} \int \frac{\mathbf{p}''^2 d\mathbf{p}''}{(2\pi)^3} \mathcal{V}^{J^P}_{\lambda\lambda''}(\mathbf{p},\mathbf{p}'') G_0(\mathbf{p}'') \mathcal{M}^{J^P}_{\lambda''\lambda'}(\mathbf{p}'',\mathbf{p}').$$

where
$$\lambda,\,\lambda'$$
 and $\lambda''\,\geq 0$ and $\hat{M}^{JP}_{\lambda'\lambda}=f_{\lambda'}f_{\lambda}M^{JP}_{\lambda'\lambda},$ with $f_0=\frac{1}{\sqrt{2}}$ and $f_{\lambda\neq 0}=1.$

The potential is defined as

$$\mathcal{V}_{\lambda'\lambda}^{J^P}(\mathrm{p}',\mathrm{p}) = 2\pi \int d\cos heta \; [d_{\lambda\lambda'}^J(heta) \mathcal{V}_{\lambda'\lambda}(oldsymbol{p}',oldsymbol{p}) + \eta d_{-\lambda\lambda'}^J(heta) \mathcal{V}_{\lambda'-\lambda}(oldsymbol{p}',oldsymbol{p})],$$

where $k_1 = (W - E, 0, 0, -p), k_2 = (E, 0, 0, p)$ and $k'_1 = (W - E', -p' \sin \theta, 0, -p' \cos \theta),$ $k'_{2} = (E', p' \sin \theta, 0, p' \cos \theta)$ with $p = |\mathbf{p}|$ in order to avoid confusion with the four-momentum p.

LHCb pentaquarks as hadronic molecular states Results Hadronic molecular state $\bar{D}\Sigma_c^*, \bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Qusipotential Bethe-Salpeter equation

Solving the 1D BSE for scattering amplitude

We discretize the momenta ${\bf p},\,{\bf p}'$ and ${\bf p}''$ by the Gaussian quadrature with weight $w({\bf p}_i),$

$$iM_{ik} = iV_{ik} + \sum_{j=0}^{N} iV_{ij}G_j iM_{jk},$$

with the discretized propagator

$$\begin{split} G_{j>0} &= \quad \frac{w(\mathbf{p}'_{j}')\mathbf{p}''^{2}}{(2\pi)^{3}}G_{0}(\mathbf{p}''_{j}), \\ G_{j=0} &= \quad -\frac{i\mathbf{p}''_{o}}{32\pi^{2}W} + \sum_{j}\left[\frac{w(\mathbf{p}_{j})}{(2\pi)^{3}}\frac{\mathbf{p}''^{2}}{2W(\mathbf{p}''_{j}^{2}-\mathbf{p}''_{o}^{2})}\right] \end{split}$$

In numerical solution, N should be large enough to produce stable result. Usually, N = 50 is chosen.

For a certain reaction, the initial and final particles should be on-shell. The scattering amplitude is

$$\hat{M} = M_{00} = \sum_{j} [(1 - VG)^{-1}]_{0j} V_{j0}, \text{ pole } :|1 - VG| = 0$$

The total cross section can be written as

$$\sigma = \frac{1}{16\pi s} \frac{|\mathbf{p}'|}{|\mathbf{p}|} \sum_{J^P, \lambda \ge 0\lambda' \ge 0} \frac{2J+1}{2} \left| \frac{\hat{M}_{\lambda\lambda'}^{J^P}}{4\pi} \right|^2.$$

Note that the second sum extends only over positive λ and λ' . Since there is no interference between the contributions from different partial waves, the total cross section can also be divided into partial-wave cross sections, allowing a direct access to the importance of the individual partial waves.

Jun He

(日) (同) (三) (三)

Outline

Introduction

- Studies about pentaquarks before LHCb experiment
- LHCb Experiment
- Theoretical studies after LHCb experiment

2 LHCb pentaquarks as hadronic molecular states

- Hadronic molecular state
- $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
- Qusipotential Bethe-Salpeter equation

3 Results

• Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions

Jun He

- Could P-wave state be observed in experiment?
- Discussion and Summary

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction LHCb pentaquarks as hadronic molecular states **Results** Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Could P-wave state be observed in experiment? Discussion and Summary

Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions

JH, PLB753(2016)547

Bound state relevant to $P_c(4380)$ and $P_c(4450)$

$P_c(4380)$:	$\bar{D}\Sigma_c^*$ $[3/2^-, 0.7 - 1.4]$,	$\bar{D}\Sigma_c^*$ [3/2 ⁺ , 2.8–5.0],	$\bar{D}^*\Sigma_c[3/2^-, 3.0-3.7];$
$P_c(4450)$:	$\bar{D}^*\Sigma_c[5/2^+, 2.7-2.8],$	$\bar{D}^*\Sigma_c[5/2^-, 2.8 - 2.9],$	$\bar{D}^* \Sigma_c^* [5/2^+, 2-2.1].$

The values in the bracket are spin-parity of the system and the cut offs in the unit of GeV which produces the experimental mass within uncertainties.

Identification of $P_c(4380)$ and $P_c(4450)$ based on mass and spin parity

LHCb experiment:

$P_c(4380)$:	$M=4380\pm8\pm29$ MeV,	$J^P = 3/2^$
$P_c(4450)$:	$M = 4449.8 \pm 1.7 \pm 2.5$ MeV,	$J^P = 5/2^+.$

Hence, we can identify the $P_c(4380)$ and the $P_c(4450)$ as

 $P_c(4380): \overline{D}\Sigma_c^*[3/2^-]; \quad P_c(4450): \overline{D}^*\Sigma_c[5/2^+].$

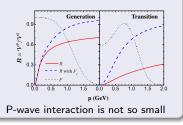
 $P_c(4450)$ is a state from P- and F-wave $\bar{D}^*\Sigma_c$ interaction!

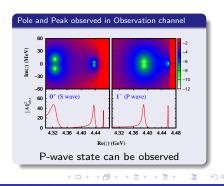
通 と く ヨ と く ヨ と

Introduction Bo LHCb pentaquarks as hadronic molecular states Co Results Di

Bound states from $\overline{D}\Sigma_c^*$, $\overline{D}^*\Sigma_c$ and $\overline{D}^*\Sigma_c^*$ interactions **Could P-wave state be observed in experiment?** Discussion and Summary

Could P-wave state be observed in experiment? Toy Model

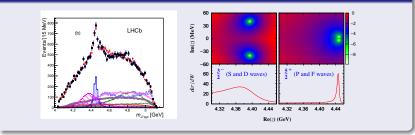

JH, arXiv:1607.03223


Two-channel scattering of scalar mesons

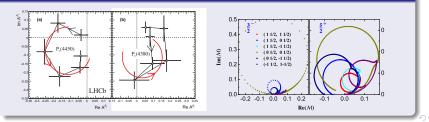
	Generation channel	Observation channel	Coupling
Mass of threshold $M_{1,2}$	$M_{\bar{D}^*,\Sigma_c}$	$M_{J/\psi,p}$	
mass of exchanged meson m_{ex}	m_{π}		m_D
Potential $i\mathcal{V}$	$\frac{C}{q^2 - m_{\pi}^2}$	0	$\frac{C'}{q^2 - m_D^2}$

$$\mathcal{V}_{ij}^{l}(\mathbf{p}',\mathbf{p}) = 4\pi \int d\cos\theta P_{l}(\theta) \mathcal{V}_{ij}(\mathbf{p}',\mathbf{p})$$

Jun He


 $\bar{D}\Sigma_{c}^{*}$ and $\bar{D}^{*}\Sigma_{c}$ interactions and LHCb hidden-charmed pentaquarks

Introduction HCb pentaquarks as hadronic molecular states **Results** Bound states from $D\Sigma_c^*$, $D^*\Sigma_c$ and $D^*\Sigma_c^*$ interactions **Could P-wave state be observed in experiment?** Discussion and Summary


Application to the $\bar{D}^*\Sigma_c$ interaction

JH, arXiv:1607.03223

Pole

Argand

Jun He

 $\bar{D}\Sigma_{c}^{*}$ and $\bar{D}^{*}\Sigma_{c}$ interactions and LHCb hidden-charmed pentaquarks

Introduction	Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions
LHCb pentaquarks as hadronic molecular states	Could P-wave state be observed in experiment?
Results	Discussion and Summary

Discussion

LHCb experiment	Bound state
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{rl} P_c(4380) \colon & \bar{D}\Sigma_c^* \; [3/2^-, 0.7 - 1.4], \\ & \bar{D}\Sigma_c^* \; [3/2^+, 2.8 - 5.0], \\ & \bar{D}^* \Sigma_c [3/2^-, 3.0 - 3.7]; \\ P_c(4450) \colon & \bar{D}^* \Sigma_c [5/2^+, 2.7 - 2.8], \\ & \bar{D}^* \Sigma_c [5/2^-, 2.8 - 2.9], \\ & \bar{D}^* \Sigma_c^* [5/2^+, 2 - 2.1]. \end{array}$

- Too many bound state are produce from the interactions with different cutoffs. The cutoff for each interaction should be different and has not been determined in experiment or theory.
- It is more natural to assign the $P_c(4380)$ and the $P_c(4450)$ as $3/2^-$ -wave and $5/2^+$ -wave $\bar{D}^*\Sigma_c$ state. Only one cutoff is Involved.
- The existence of two or more resonant signals around 4380 MeV, especially those with spin parity $3/2^-$, can not be excluded because of the large widths for the $P_c(4380)$ obtained here and in experiment. So, it do not conflict with the identification based on mass and J^P .

We study the possibility to interpret two LHCb pentaquarks $P_c(4380)$ and $P_c(4450)$ as molecular state from the $\bar{D}\Sigma_c^*$ and $\bar{D}^*\Sigma_c$ interactions.

- Many bound states can be produced from the $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and the $\bar{D}^*\Sigma_c^*$ interactions
- Two possible assignments of $P_c(4380)$ and the $P_c(4450)$:

as $3/2^- \bar{D}\Sigma_c^*$ and $5/2^+ \bar{D}^*\Sigma_c$ molecular state based on mass and J^P .

as $3/2^-$ and $5/2^+$ $\bar{D}^*\Sigma_c$ molecular state base on a two-channel analysis.

• The $P_c(4450)$ is a $5/2^+ \ \bar{D}^* \Sigma_c$ state.

The $P_c(4380)$ may have more complicated origin.

- P-wave introduction can produce a bound state as well as S-wave interaction.
- The P-wave state can be observed as well as S-wave state.
- P wave may be non-negligible even when the S wave is not forbidden.

マロト イラト イラト

Bound states from $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$ and $\bar{D}^*\Sigma_c^*$ interactions Could P-wave state be observed in experiment? Discussion and Summary

1

Thank you!

Jun He

 $\bar{D}\Sigma_c^*$ and $\bar{D}^*\Sigma_c$ interactions and LHCb hidden-charmed pentaquarks