Measurement of Antiquark Flavor Asymmetry in the Proton by the Drell–Yan Experiment SeaQuest at Fermilab

MENU 2016, Meson-Nucleon Physics and the Structure of the Nucleon

Kei Nagai

Tokyo Institute of Technology

27th July, 2016

Contents

1 Introduction

- 2 SeaQuest Experiment: Drell–Yan Process
 - 3 Data Analysis and Results

Kei Nagai (Tokyo Tech)

1. Introduction

Valence Quarks and Sea Quarks

- Valence quarks carry the quantum numbers such as the electric charge and isospin.
- Sea quarks are generated from gluon splitting.

• Probability of gluon splitting is independent of quark flavors.

- Coupling constant is the same.
- ightarrow The amounts of $u ar{u}$ and $d ar{d}$ should be the same. "Flavor Symmetry"

Here, the quarks are current quarks: m_u and m_d are a few MeV/c^2 .

Kei Nagai (Tokyo Tech)

MENU2016 27-Ns-2 - 4

 Gottfried sum was measured by Deep Inelastic Muon Scattering to test flavor symmetry.

 $S_G \equiv \int_0^1 \frac{dx}{x} \left[F_2^p(x) - F_2^n(x) \right] = \frac{1}{3} + \frac{2}{3} \left(\int_0^1 \bar{u}_p(x) dx - \int_0^1 \bar{d}_p(x) dx \right)$ $F_2^p(x), \ F_2^n(x) : \text{structure functions of proton and neutron, respectively}$ x : Bjorken x, which is the momentum fraction of parton to proton

 Assuming that the parton distribution functions in neutron and proton have isospin symmetry:

$$\int_{0}^{1} u_{p}(x) dx = \int_{0}^{1} d_{n}(x) dx, \ \int_{0}^{1} d_{p}(x) dx = \int_{0}^{1} u_{n}(x) dx \int_{0}^{1} \bar{u}_{p}(x) dx = \int_{0}^{1} \bar{d}_{n}(x) dx, \ \int_{0}^{1} \bar{d}_{p}(x) dx = \int_{0}^{1} \bar{u}_{n}(x) dx$$

- If \bar{d} and \bar{u} in the proton are symmetric, Gottfried Sum is 1/3.
- NMC experiment at CERN (1990) $S_G = 0.235 \pm 0.026 < 1/3$ $\rightarrow \int_0^1 \bar{d}(x) dx > \int_0^1 \bar{u}(x) dx$

Discovery of "Flavor Asymmetry"

\boldsymbol{x} Dependence of Flavor Asymmetry

E866 experiment (0.015 < x < 0.35) and NA51 experiment $(x \sim 0.2)$ measured Bjorken x dependence of \bar{d}/\bar{u} in the proton using Drell–Yan process.

- \bar{d}/\bar{u} is the ratio of antiquark PDFs of \bar{d} and \bar{u}
- \bar{d}/\bar{u} deviates from 1.0 \rightarrow "Flavor Asymmetry"

- \bullet 70% asymmetry at maximum has been measured at $x\sim 0.2.$
 - · Several models are proposed for explaining this result.
- $x \gtrsim 0.3$: More accurate measurement is needed.
 - Statistical error is large.

SeaQuest is measuring \bar{d}/\bar{u} at large x (0.1 < x < 0.45) accurately!!

Understanding the flavor asymmetry of the antiquarks in the proton is a challenge in QCD.

- ${\ensuremath{\, \bullet }}$ It is important to measure with higher accuracy and in wider Bjorken x range.
- Theoretical investigation from the first principle of QCD such as lattice QCD calculation is important.
- QCD effective models and hadron models can also be tested with the flavor asymmetry of antiquarks.

Meson Cloud Model, for example

 A proton wave function contains virtual meson wave functions;

$$|\mathbf{p}\rangle = \alpha |\mathbf{p}_0\rangle + \beta |\mathbf{n}\pi^+\rangle + \gamma |\Delta^{++}\pi^-\rangle + \cdots$$

- $p \rightarrow n + \pi^+$: π^+ includes \bar{d} .
- $\mathbf{p} \rightarrow \Delta^{++} + \pi^-$: π^- includes \bar{u} .
 - * Probability of $p \rightarrow n + \pi^+$ is higher than that of $p \rightarrow \Delta^{++} + \pi^-$.
 - ★ It leads to $\bar{d} > \bar{u}$.

SeaQuest experiment provides the new data points.

It will be useful for understanding the structure of the proton.

2. SeaQuest Experiment: Drell-Yan Process

SeaQuest Experiment

- Fermi National Accelerator Laboratory (Fermilab)
 - $^\circ~$ Main Injector: 120 GeV ($\sqrt{s}=15~{\rm GeV})$ proton beam
- Collaboration: Japan, USA, Taiwan
- Drell–Yan experiment
 - $\circ \ q\bar{q} \to \gamma \to \mu^+\mu^-$
 - An antiquark is always involved in the interaction. → Drell–Yan process can directly access antiquarks
 - We measure the momenta of muons in the final state
 - $\star~$ Typical momentum of the muon $\sim~40~{\rm GeV}$
- Measurements with Drell–Yan Process
 - Antiquark Flavor Asymmetry
 - Boer–Mulders Function
 - Partonic Energy Loss

Collaboration

- * Abilene Christian University
- * Academia Sinica
- * Argonne National Laboratory
- * University of Colorado
- Fermi National Accelerator Laboratory
- University of Illinois
- * KEK
- * Los Alamos National Laboratory

Japanese Group

- * University of Maryland
- * University of Michigan
- National Kaohsiung Normal University
- * RIKEN
- * Rutgers University
- Tokyo Institute of Technology
- * Yamagata University

- o In charge of running and managing drift chambers
- Two of the drift chambers (St. 3 chambers) are built with JSPS KAKENHI

Timeline

Year	Month		Year	Month	
2009	04	Building detectors	2014	09-10	Accelerator Shutdown
2011	08			11–	Run III
2012	02.04	Commissioning Run	2015	07-09	Accelerator Shutdown
2012	03-04	(Run I)		10-	Run IV
	05–	Upgrade detectors	2016	08-11?	Accelerator Shutdown
2013	11–	Run II	2016	11?	Run V

• Run IV is about to finish

- obtained:
 - $1.1\times 10^{18}~{\rm protons}$
- Proposal: 3.4×10^{18} protons
- Run V will start later this year.
 - $^\circ~$ Total with Run V will be $1.5\times10^{18}.$
 - Reach 50% of proposal.

Spectrometer

Measures momenta of dimuons from Drell-Yan process.

- Targets:
 - proton, deuteron, carbon, iron and tungsten
- Hadron absorbers:
 - Downstream the targets, to stop the proton beam
 - Between St. 3 and St. 4 for muon identification

- Four Tracking "Stations":
 - Hodoscopes for Trigger.
 - Drift Chambers or Proportional Tubes for Tracking.
- Two Dipole Magnets:
 - Focuses the muons and dumps the beam.
 - Determines muon momenta.

- Beam energy: 120 GeV
 - $\circ~$ Center of mass energy $\sqrt{s}=15~{\rm GeV}$
- 5 seconds of the beam is provided every 60 seconds.
 - The other 55 seconds of the beam is used for a neutrino experiment at Fermilab. The targets of SeaQuest are swapped during this 55 seconds.
- Beam bunch
 - Frequency: 53 MHz (comes every 19 ns)
 - One bunch contains 40k protons on average.
 - Duty Factor (indicates stability of beam intensity I) $\equiv \langle I \rangle^2 / \langle I^2 \rangle$: 30% in Run II \rightarrow 45% after Run III

Targets

- Liquid Targets: LH2, LD2
- Solid Targets: Iron, Carbon, Tungsten
- Move the target table during beam off

Target

Target

Data set:

- approximetely 5% of final data set taken in Run II
- Succeeded in reconstructing the mass distributions.
 - $\circ\,$ Drell–Yan, J/ ψ , ψ' : estimated with simulation
 - Random Background: estimated using real data
 - Experimental data were well fitted
 - $\star\,$ Detectors and tracking tools work as expected
 - * Drell–Yan events are dominant at mass $\geq 4.2 \text{ GeV}$

3. Data Analysis and Results

Analysis Method

• SeaQuest uses proton-proton and proton-deuteron Drell-Yan process.

$$\frac{d^2\sigma}{dx_t dx_b} = \frac{4\pi\alpha^2}{9x_t x_b} \frac{1}{s} \sum e^2 [\bar{q}_t(x_t)q_b(x_b) + \bar{q}_b(x_b)q_t(x_t)]$$

$$\cdot x_t \ll x_b \text{ in SeaQuest acceptance.}$$

$$\cdot q_{\bar{b}}(x_b)q_t(x_t) \text{ can be ignored.}$$

$$\cdot \text{ Cross section ratio provides } \bar{d}/\bar{u}:$$

$$\frac{1}{2} \frac{\sigma^{pd \to \mu^+ \mu^-}}{\sigma^{pp \to \mu^+ \mu^-}} \Big|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]$$

$$\frac{10^{-1}}{\sqrt{\frac{10^{-2}}$$

Extracting the Cross Section Ratio

$$\frac{\sigma^{pd}}{2\sigma^{pp}} = \frac{1}{2} \left(\frac{N_D \cdot C_D}{P_D \cdot G_D} \right) \left/ \left(\frac{N_H \cdot C_H}{P_H \cdot G_H} \right) \right.$$

N : Number of dimuons, C : Correction factor,

- ${\boldsymbol{P}}:$ Number of protons in the beam, ${\boldsymbol{G}}:$ Number of nucleons in the target
- 1. Count dimuon yields of each LH2 and LD2 target as a function of x (N)
- 2. Correct dimuon yields $(N \cdot C)$
 - Background subtraction
 - Tracking efficiency correction
 - $\star\,$ Tracking efficiency depends on beam intensity or chamber hit rate
- 3. Normalize the corrected dimuon yields ($N \cdot C / P \cdot G$)
 - $G_D \sim 2 \cdot G_H$
- 4. Take ratio of them
 - Cross section ratio is obtained!
- Benefit of taking the ratio
 - Don't have to require the absolute value of cross section
 - Cancel out the systematics
 - detector acceptance
 - intensity of the beam
 - efficiency

Cross Section Ratio

Released preliminary result in April 2016.

Cross section ratio of σ^{pd} and σ^{pp}

Systematics

- Hydrogen contamination of deuterium target
- Background subtraction
- Remaining hit rate dependence of dimuon yields
 - Most of it was corrected by tracking efficiency correction.
- $\bullet\,$ Data analysis was done with ${\sim}70\%$ of FY 2014 and FY 2015 data.
- ${\bullet}\,$ Cross section ratio at 0.1 < x < 0.58 is obtained
- $\bullet\,$ Cross section ratio at each bin >1

Iterative analysis has been done at each \boldsymbol{x} bin

- 1. obtain $R_{\rm data}$ from data
 - $\circ~R_{\rm data}:$ cross section ratio obtained from data
- 2. set $\bar{d}/\bar{u}=1$
- 3. calculate $R_{
 m pred}$ at leading order based on estimate of ${ar d}/{ar u}$
 - $\circ~R_{\rm pred}$: cross section ratio predicted from CT10NLO PDF
 - $\star\,$ CT10NLO: PDF at next to leading order calculated by CTEQ group.

$$\sigma^{pp} \propto \sum e_i^2 q_i(x_1) \bar{q}_i(x_2)$$

$$q_i = u, d, s, c$$

- 4. update estimate of ${ar d}/{ar u}$ based on $R_{
 m pred}$ and $R_{
 m data}$
- 5. repeat the step 3 and step 4 until $R_{\rm pred} = R_{\rm data}$ is reached.

Flavor Asymmetry

Released preliminary result in April 2016.

Systematics

- (The same sources as cross section ratio)
- Uncertainties from PDFs

• \bar{d}/\bar{u} at 0.1 < x < 0.58 is obtained based on the cross section ratio

The same trend as cross section ratio

• $\bar{d}/\bar{u} > 1$ at each bin

 \rightarrow Antiquark flavor asymmetry has been found at high Bjorken x.

- We are taking data in FY 2016 with updated detector with a wider Bjorken *x* acceptance.
 - \circ More statistics at higher x

Flavor Asymmetry (Compared with E866, NA51)

- Comparison with the previous experiments (E866, NA51)
- ${\scriptstyle \odot}$ SeaQuest and the previous experiments agree well at small x
- \bar{d}/\bar{u} around x = 0.3 is higher than that of E866 beyond statistical and systematic errors.
 - Physical reasons for the difference between the SeaQuest result and the E866 results are being investigated.

4. Summary

- The proton consists of quarks, antiquarks and gluons.
- Bjorken x dependence of flavor asymmetry of antiquarks (\bar{u} and \bar{d}) is important to understand the structure of the proton.
- SeaQuest measures flavor asymmetry of antiquarks in the proton at large x (0.1 < x < 0.45) using Drell–Yan process.
- We constructed a dimuon spectrometer.
- We analyzed FY 2015 data.
- Dimuon mass was reconstructed well.
 - $\,\circ\,$ Detectors and tracking tools work as expected.
- We obtained cross setion ratio and \bar{d}/\bar{u} at 0.1 < x < 0.58.
 - $\circ~$ Cross section ratio and $ar{d}/ar{u}>1$ at each bin
 - \rightarrow Antiquark flavor asymmetry has been found at high Bjorken x.
- Understanding the flavor asymmetry of the antiquarks in the proton is a challenge in QCD.

Backup

Cross Section Ratio (Compared with E866)

Cross section ratio of σ^{pd} and σ^{pp}

• Comparison with the previous experiment (E866)

- \circ Obtained cross section ratio at larger Bjorken x
- SeaQuest data are larger than those of E866

Difference of Cross Section Ratio?

CT10NLO: PDF at next to leading order calculated by CTEQ group. Fitted with E866 results.

- CT10NLO cross section ratio with SeaQuest kinematics is larger than that with E866 kinematics
 - $\,\circ\,$ Difference of Q^2 doesn't make the difference of PDF
 - Bjorken x in beam of SeaQuest is higher than that of E866 \rightarrow PDFs of antiquarks and quarks are not the same
 - $\circ~$ Cross section ratio difference at $x \lesssim 0.2$ can be explained by difference of beam Bjorken x, but not at higher x

Kei Nagai (Tokyo Tech)

MENU2016 27-Ns-2 - 4