

Search for Dark Sector at BESIII

YUPING GUO ON BEHALF OF THE BESIII COLLABORATION

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

July 25-30, 2016 Kyoto Japan

DARK MATTER

Rotation curve of the typical spiral galaxy M 33

Numerous indirect astrophysical and cosmological observations point to the presence of dark matter

https://en.wikipedia.org/wiki/Galaxy_rotation_curve

DARK MATTER

Rotation curve of the typical spiral galaxy M 33

- Numerous indirect
 astrophysical and
 cosmological
 observations point to
 the presence of dark
 matter
- Dark matter: a factor of 5 over normal matter
- Gravitational interaction
- Constitution keep unknown

DARK SECTOR

Consisting of (light) particles do not interact with the known strong, weak, or electromagnetic forces

Portal	Particles	Operator(s)
"Vector"	Dark photons	$-rac{\epsilon}{2\cos heta_W}B_{\mu u}F^{\prime\mu u}$
"Axion"	Pseudoscalars	$\frac{a}{f_a}F_{\mu\nu}\widetilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i\mu\nu}\widetilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$
"Higgs"	Dark scalars	$(\mu S + \lambda S^2) H^{\dagger} H$
"Neutrino"	Sterile neutrinos	$y_N LHN$

R. Essig, et al, arXiv:1311.0029

Beijing Electron Positron Collider-II

Storage Ring

ES

tector

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

inear Acceler

Beijing Electron Positron Collider-II

BEPCII: τ-charm factory Beam energy: 1-2.3 GeV Design luminosity: 1×10³³ cm⁻²s⁻¹ (April 2016) Data taking from 2009 to present

BESIII DATA SET

XYZ region

BESIII COLLABORATION

ACTIVITIES AT BESIII

- Search for dark photon
- Search for meson invisible decays
- Search for CP-odd light Higgs

DARK PHOTON (γ')

- New Abelian guage group U(1) force carrier
- Kinematic mixing with SM U(1) with mixing coefficient ε

B. Holdom, PLB 166,196 (1986)

- **Typical mix strength:** ε 10⁻²~10⁻⁵, could be smaller
- Expected mass scale: MeV/c² ~ GeV/c²
- Could explain large number of astrophysical anomalies

N. Arkani-Hamed et al., PRD 79, 015014 (2009) S. Andreas, A. Ringwald arXiv:1008.4519 (2010)

Also deviation on muon anomaly $(g-2)_{\mu}$

M. Pospelov, PRD 80,095002 (2009)

DARK PHOTON SEARCH

- 2.9 fb⁻¹ ψ(3770) data sample
- Initial State Radiation process:

 $e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}\mu^+\mu^-$

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}e^+e^-$$

APS/Alan Stonebreaker

• Search for narrow structure on top of the continuum QED background ($e^+e^- \rightarrow \gamma_{ISR} l^+ l^-$)

MASS SPECTRUM

Cover mass region: 1.5 GeV/ $c^2 \sim 3.4$ GeV/ c^2

- <1.5 GeV/ c^2 : $\pi^+\pi^-$ background dominates
- >3.4 GeV/c²: hadronic qq-bar process

NUMBER OF SIGNAL EVENTS

- Fit QED background with 4th order polynomial function
- No peaking structure observed in (data-fit)
- 90% confidence level limit obtained with profile likelihood approach, systematic uncertainty included

W. Rolke et al., NIM A 551, 493 (2005)

Combined statistical significance less than 3 σ

INVISIBLE DECAY OF $\eta^{(')}$

Tiny in Standard Model due to helicity suppression: ~10⁻¹¹ (η)

A. R. Fazely, et al., PRD81, 117101(2010)

- Any enhanced signal of invisible decay may indicate New Physics
- Possible through new gauge boson U(1)

- 0.22 B J/ψ sample
- $J/\psi \rightarrow \phi \eta^{(')}$, tag ϕ with K⁺K⁻
 - 8.2 × 10⁴ η
 - 4.4 × 10⁴ η[']

BESIII, PRD 87, 012009 (2013)

INVISIBLE DECAY OF η^(*)

- Improved upper limits in both cases
- Theory estimate: $B(\eta^{(')} \rightarrow \chi \chi) \sim 7.4(8.1) \times 10^{-5(7)}$

CP-ODD LIGHT HIGGS

 Coupling of fermions and the CP-odd Higgs (A⁰) in Nextto-Minimal Supersymmetry Standard Model (NMSSM):

 X_{f} the coupling of the A^0 field to up (down) type fermion pairs, proportional to $\cos\theta_A \cot\beta$ ($\cos\theta_A \tan\beta$)

 θ_{A} the mixing angle between the CP-odd singlet and doublet component of the A^{0}

 $tan\beta$: the ratio of the vacuum expectation values of the up and down type Higgs doublets

RESULT OF ψ ' **DATA**

 $\psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$

BESIII PRD 85, 092012 (2012)

1.06 M ψ ' events

Expected B(J/ $\psi \rightarrow \gamma A^0$): ~10⁻⁹ to 10⁻⁷ level

R. Dermisek, J. F. Gunion, B. Mcelrath PRD 76, 051105 (2007)

- No evidence is observed
- Upper limits on B(J/ $\psi \rightarrow \gamma A^0$) × B($A^0 \rightarrow \mu^+ \mu^-$): 4 × 10⁻⁷ ~ 2.1 × 10⁻⁵

RESULT OF J/ψ DATA

 $J/\psi \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$

BESIII PRD 93, 052005 (2016)

RESULT OF J/ψ DATA

 $J/\psi \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$

BESIII PRD 93, 052005 (2016)

Local significance: 3.42 σ

RESULT OF J/ ψ **DATA**

 $J/\psi \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$

BESIII PRD 93, 052005 (2016)

RESULT OF J/ ψ **DATA**

$$J/\psi
ightarrow \gamma A^0$$
, $A^0
ightarrow \mu^+ \mu^-$

BESIII PRD 93, 052005 (2016)

OC

RESULT OF J/ψ DATA

New upper limits are five times below BESIII previous result (ψ ' data)

BESIII PRD 93, 052005 (2016)

RESULT OF J/ ψ **DATA**

19

SUMMARY

- Activities related to dark sector at BESIII:
 - Dark photon search through ISR process in 1.5 GeV/*c*² ~
 3.4 GeV/*c*², significance less then 3σ
 - Invisible decay of $\eta^{(')}$ meson study
 - CP-odd Higgs boson search through radiative decay of J/ψ
- More study related to dark sector with larger data sample to be expected

