On the near-threshold incoherent ϕ photoproduction on the deuteron: Any trace of a resonance?

MENU 2016, Kyoto University

July 2016

Alvin Stanza Kiswandhi ${ }^{1,2}$

In collaboration with:
Shin Nan Yang ${ }^{2}$ and Yu Bing Dong ${ }^{3}$

1 Surya School of Education, Tangerang 15810, Indonesia
2 Center for Theoretical Sciences and Department of Physics,
National Taiwan University, Taipei 10617, Taiwan
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Motivation

- Presence of a local peak near threshold at $E_{\gamma} \sim 2.0 \mathrm{GeV}$ in the differential cross-section (DCS) of $\gamma p \rightarrow \phi p$ at forward angle by Mibe and Chang, et al. [PRL 95 182001 (2005)] from the LEPS Collaboration.
\longrightarrow Observed also recently by JLAB: B. Dey et al. [PRC 89055208 (2014)], and Seraydaryan et al. [PRC 89055206 (2014)].
- Conventional model of Pomeron plus π and η exchanges usually can only give rise to a monotonicallyincreasing behavior.
- We would like to see whether this local peak can be explained as a resonance.
- In order to check this assumption, we apply the results on $\gamma p \rightarrow$ ϕp to $\gamma d \rightarrow \phi p n$ to see if we can describe the latter.

Reaction model for $\gamma p \rightarrow \phi p$

- Here are the tree-level diagrams calculated in our model in an effective Lagrangian approach.

(c)

(d)
N^{*} is the postulated resonance.
$-p_{i}$ is the 4 -momentum of the proton in the initial state,
$-k$ is the 4 -momentum of the photon in the initial state,
$-p_{f}$ is the 4 -momentum of the proton in the final state,
$-q$ is the 4 -momentum of the ϕ in the final state.

Pomeron exchange

We follow the work of Donnachie, Landshoff, and Nachtmann
\longrightarrow Pomeron-isoscalar-photon analogy

$$
\begin{gathered}
i \mathcal{M}=i \bar{u}_{f}\left(p_{f}\right) \epsilon_{\phi}^{* \mu} M_{\mu \nu} u_{i}\left(p_{i}\right) \epsilon_{\gamma}^{\nu} \\
M_{\mu \nu}=M(s, t) \Gamma_{\mu \nu} \\
M(s, t)=C_{P} F_{1}(t) F_{2}(t) \frac{1}{s}\left(\frac{s-s_{t h}}{4}\right)^{\alpha_{P}(t)} \exp \left[-i \pi \alpha_{P}(t) / 2\right]
\end{gathered}
$$

- $\Gamma^{\mu \nu}$ is chosen to maintain gauge invariance.
- The strength factor $C_{P}=3.65$ is chosen to fit the total cross sections data at high energy.
- The threshold factor $s_{t h}=1.3 \mathrm{GeV}^{2}$ is chosen to match the forward differential cross sections data at around $E_{\gamma}=6$ GeV .

π and η exchanges

- For t-channel exchange involving π and η, we use

$$
\begin{aligned}
\mathcal{L}_{\gamma \phi M} & =\frac{e g_{\gamma \phi M}}{m_{\phi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} \phi_{\nu} \partial_{\alpha} A_{\beta} \varphi_{M} \\
\mathcal{L}_{M N N} & =\frac{g_{M N N}}{2 M_{N}} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \partial_{\mu} \varphi_{M}
\end{aligned}
$$

with $M=(\pi, \eta)$.

- We choose $g_{\pi N N}=13.26, g_{\eta N N}=1.12, g_{\gamma \phi \pi}=-0.14$, and $g_{\gamma \phi \eta}=-0.71$.
- Form factor at each vertex in the t-channel diagram is

$$
F_{M N N}(t)=F_{\gamma \phi M}(t)=\frac{\Lambda_{M}^{2}-m_{M}^{2}}{\Lambda_{M}^{2}-t}
$$

- The value $\Lambda_{M}=1.2 \mathrm{GeV}$ is taken for both $M=(\pi, \eta)$.

Resonances

- Only spin $1 / 2$ or $3 / 2$ because the resonance is close to the threshold.
- Lagrangian densities that couple spin-1/2 and 3/2 particles to γN or ϕN channels are
$\mathcal{L}_{\phi N N^{*}}^{1 / 2^{ \pm}}=g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{\mu} \psi_{N^{*}} \phi_{\mu}+g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{ \pm} \sigma_{\mu \nu} G^{\mu \nu} \psi_{N^{*}}$,
$\mathcal{L}_{\phi N N^{*}}^{3 / 2^{ \pm}}=i g_{\phi N N^{*}}^{(1)} \bar{\psi}_{N} \Gamma^{ \pm}\left(\partial^{\mu} \psi_{N^{*}}^{\nu}\right) \tilde{G}_{\mu \nu}+g_{\phi N N^{*}}^{(2)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{5}\left(\partial^{\mu} \psi_{N^{*}}^{\nu}\right) G_{\mu \nu}$ $+i g_{\phi N N^{*}}^{(3)} \bar{\psi}_{N} \Gamma^{ \pm} \gamma^{5} \gamma_{\alpha}\left(\partial^{\alpha} \psi_{N^{*}}^{\nu}-\partial^{\nu} \psi_{N^{*}}^{\alpha}\right)\left(\partial^{\mu} G_{\mu \nu}\right)$,
where $G_{\mu \nu}=\partial_{\mu} \phi_{\nu}-\partial_{\nu} \phi_{\mu}$ and $\tilde{G}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} G^{\alpha \beta}$. The operator $\Gamma^{ \pm}$are given by $\Gamma^{+}=1$ and $\Gamma^{-}=\gamma_{5}$, depending on the parity of the resonance N^{*}.
- For the $\gamma N N^{*}$ vertices, simply change $g_{\phi N N^{*}} \rightarrow e g_{\gamma N N^{*}}$ and $\phi_{\mu} \rightarrow A_{\mu}$.
- Current conservation fixes $g_{\gamma N N^{*}}^{(1)} \rightarrow 0$ for $J^{P}=1 / 2^{ \pm}$and the term proportional to $g_{\gamma N N^{*}}^{(3)}$ vanishes in the case of real photon.
- The effect of the width is taken into account in a BreitWigner form by replacing the usual denominator $p^{2}-M_{N^{*}}^{2} \rightarrow$ $p^{2}-M_{N^{*}}^{2}+i M_{N^{*}} \Gamma_{N^{*}}$.
- The form factor for the vertices used in the s - and u channel diagrams is

$$
F_{N^{*}}\left(p^{2}\right)=\frac{\Lambda^{4}}{\Lambda^{4}+\left(p^{2}-M_{N^{*}}^{2}\right)^{2}}
$$

with $\Lambda=1.2 \mathrm{GeV}$ for all resonances.

Fitting to $\gamma p \rightarrow \phi p$ experimental data

- We include only one resonance at a time.
- We fit only masses, widths, and coupling constants of the resonances to the experimental data, while other parameters are fixed during fitting.
- Experimental data to fit
- Differential cross sections (DCS) at forward angle
- DCS as a function of t at eight incoming photon energy bins
- Nine spin-density matrix elements (SDME) at three incoming photon energy bins

7

Results for $\gamma p \rightarrow \phi p$

- Both $J^{P}=1 / 2^{ \pm}$resonances cannot fit the data.
- DCS at forward angle and as a function of t are markedly improved by the inclusion of the $J^{P}=3 / 2^{ \pm}$resonances.
- In general, SDME are also improved by both $J^{P}=3 / 2^{ \pm}$ resonances.
- Decay angular distributions, not used in the fitting procedure, can also be explained well.
- We study the effect of the resonance to the DCS of $\gamma p \rightarrow \omega p$. \longrightarrow The resonance seems to have a considerable amount of strangeness content.

DCS of $\gamma p \rightarrow \phi p$ at forward angle

Black $\rightarrow J^{P}=3 / 2^{-} \operatorname{Red} \rightarrow J^{P}=3 / 2^{+}$
Total \rightarrow full, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed

DCS of $\gamma p \rightarrow \phi p$ as a function of t

Black $\rightarrow J^{P}=3 / 2^{-}$Red $\rightarrow J^{P}=3 / 2^{+}$
Total \rightarrow full, Nonresonant \rightarrow dotted, Resonant \rightarrow dashed

SDME of $\gamma p \rightarrow \phi p$ as a function of t

$$
1.77<\mathrm{E}_{\gamma}<1.97 \mathrm{GeV}
$$

11

SDME of $\gamma p \rightarrow \phi p$ as a function of t $1.97<\mathrm{E}_{\gamma}<2.17 \mathrm{GeV}$

12

SDME of $\gamma p \rightarrow \phi p$ as a function of t

$$
2.17<\mathrm{E}_{\gamma}<2.37 \mathrm{GeV}
$$

13

	$J^{P}=3 / 2^{+}$	$J^{P}=3 / 2^{-}$
$M_{N^{*}}(\mathrm{GeV})$	2.08 ± 0.04	$\mathbf{2 . 0 8} \pm \mathbf{0 . 0 4}$
$\Gamma_{N^{*}}(\mathrm{GeV})$	0.501 ± 0.117	$\mathbf{0 . 5 7 0} \pm \mathbf{0 . 1 5 9}$
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(1)}$	0.003 ± 0.009	-0.205 ± 0.083
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(2)}$	-0.084 ± 0.057	-0.025 ± 0.017
$e g_{\gamma N N^{*}}^{(1)} g_{\phi N N^{*}}^{(3)}$	0.025 ± 0.076	-0.033 ± 0.017
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(1)}$	0.002 ± 0.006	-0.266 ± 0.127
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(2)}$	-0.048 ± 0.047	-0.033 ± 0.032
$e g_{\gamma N N^{*}}^{(2)} g_{\phi N N^{*}}^{(3)}$	0.014 ± 0.040	-0.043 ± 0.032
χ^{2} / N	0.891	0.821

- The ratio $A_{1 / 2} / A_{3 / 2}=1.05$ for the $J^{P}=3 / 2^{-}$resonance.
- The ratio $A_{1 / 2} / A_{3 / 2}=0.89$ for the $J^{P}=3 / 2^{+}$resonance.

Reaction model for $\gamma d \rightarrow \phi p n$

- We calculate only (a) and (b), as (c), (d), and (e) are estimated to be small.
- We want to know if the resonance would manifest itself in different reaction.

$+p n$ interchange
- Fermi motion of the proton and neutron inside the deuteron is included using deuteron wave function calculated by Machleidt in PRC 63024001 (2001).
- Final-state interactions (FSI) of $p n$ system is included using Nijmegen $p n$ scattering amplitude.
- On- and off-shell parts of the pn propagator are included.
$\longrightarrow \frac{1}{E_{p}+E_{n}-E_{1}^{\prime}-E_{2}+i \epsilon}=\frac{\mathcal{P}}{E_{p}+E_{n}-E_{1}^{\prime}-E_{2}}-i \pi \delta\left(E_{p}+E_{n}-E_{1}^{\prime}-E_{2}\right)$
- The same model for the amplitude of $\gamma p \rightarrow \phi p$.
\longrightarrow Realistic model
\longrightarrow Correct spin structure is maintained
- A $J^{P}=3 / 2^{-}$resonance is also present in the $\gamma n \rightarrow \phi n$ amplitude
- For $\phi n n^{*}$ vertex, ϕp and ϕn cases are the same since ϕ is an $I=0$ particle.
- For $\gamma n n^{*}$ vertex, we assume that the resonance would have the same properties, including its coupling to γn, as a CQM state with the same isospin, J^{P}, and similar value of $A_{1 / 2} / A_{3 / 2}$ for the γp decay
$\longrightarrow N \frac{3}{2}^{-}(2095)\left[D_{13}\right]_{5}$ in Capstick's work in PRD 46, 2864 (1992), the only one with positive value of $A_{1 / 2} / A_{3 / 2}$ for γp in the energy region.

17

Results for $\gamma d \rightarrow \phi p n$

- Notice that no fitting is performed to the LEPS data on DCS [PLB 684 6-10 (2010)] and SDME [PRC 82015205 (2010)] of $\gamma d \rightarrow \phi p n$ from Chang et al..
\longrightarrow We use directly the parameters resulting from $\gamma p \rightarrow \phi p$.
- We found a fair agreement with the LEPS experimental data on both observables.
- Resonance, Fermi motion, and $p n$ FSI effects are found to be large.
\longrightarrow Without them, the DCS data cannot be described.

DCS of $\gamma d \rightarrow \phi p n$

Not fitted

DCS of $\gamma d \rightarrow \phi p n$
Not fitted

DCS of $\gamma d \rightarrow \phi p n$

Not fitted

DCS of $\gamma d \rightarrow \phi p n$

Not fitted

DCS of $\gamma d \rightarrow \phi p n$
 Not fitted

DCS of $\gamma d \rightarrow \phi p n$ and

its ratio to twice DCS of $\gamma p \rightarrow \phi p$ at forward angle Not fitted

$$
\mathrm{t}_{\phi}=\mathrm{t}_{\max }(\text { proton })
$$

SDME of $\gamma d \rightarrow \phi p n$ as a function of t Not fitted

25

SDME of $\gamma d \rightarrow \phi p n$ as a function of t Not fitted

SDME of $\gamma d \rightarrow \phi p n$ as a function of t Not fitted

Summary and conclusions

- Inclusion of a resonance is needed to explain the nonmonotonic behavior in the DCS $\gamma p \rightarrow \phi p$ near threshold.
- Resonance with $J=3 / 2$ of either parity is preferred for $\gamma p \rightarrow$ ϕp, while $J^{P}=1 / 2^{ \pm}$cannot fit the data.
- The resonance seems to have a considerable amount of strangeness content.
\longrightarrow Based on a separate study on its effect on $\gamma p \rightarrow \omega p$.
- Agreement to the experimental data on the DCS and SDME of $\gamma d \rightarrow \phi p n$ is only quite reasonable using $J^{P}=3 / 2^{-}$resonance.
- Fermi motion, final-state interaction of $p n$, and resonance effects are found to be large and important to describe the data.

THANK YOU!

Pomeron exchange

We follow the work of Donnachie, Landshoff, and Nachtmann

$$
\begin{gathered}
i \mathcal{M}=i \bar{u}_{f}\left(p_{f}\right) \epsilon_{\phi}^{* \mu} M_{\mu \nu} u_{i}\left(p_{i}\right) \epsilon_{\gamma}^{\nu} \\
M_{\mu \nu}=\Gamma_{\mu \nu} M(s, t)
\end{gathered}
$$

with

$$
\begin{aligned}
\Gamma_{\mu \nu} & =\not \nsim\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)-\gamma_{\nu}\left(k_{\mu}-q_{\mu} \frac{k \cdot q}{q^{2}}\right) \\
& -\left(q_{\nu}-\bar{p}_{\nu} \frac{k \cdot q}{p \cdot k}\right)\left(\gamma_{\mu}-\not q \frac{q_{\mu}}{q^{2}}\right) \quad ; \quad \bar{p}=\frac{1}{2}\left(p_{f}+p_{i}\right)
\end{aligned}
$$

where $\Gamma^{\mu \nu}$ is chosen to maintain gauge invariance, and

A1

$$
M(s, t)=C_{P} F_{1}(t) F_{2}(t) \frac{1}{s}\left(\frac{s-s_{t h}}{4}\right)^{\alpha_{P}(t)} \exp \left[-i \pi \alpha_{P}(t) / 2\right]
$$

in which

$$
\begin{aligned}
& F_{1}(t)=\frac{4 m_{N}^{2}-2.8 t}{\left(4 m_{N}^{2}-t\right)(1-t / 0.7)^{2}} \\
& F_{2}(t)=\frac{2 \mu_{0}^{2}}{\left(1-t / M_{\phi}^{2}\right)\left(2 \mu_{0}^{2}+M_{\phi}^{2}-t\right)} ; \quad \mu_{0}^{2}=1.1 \mathrm{GeV}^{2}
\end{aligned}
$$

$F_{1}(t) \rightarrow$ isoscalar EM form-factor of the nucleon $F_{2}(t) \rightarrow$ form-factor for the ϕ - γ-Pomeron coupling Pomeron trajectory $\alpha_{P}=1.08+0.25 t$.

- The strength factor $C_{P}=3.65$ is chosen to fit the total cross sections data at high energy.
- The threshold factor $s_{\text {th }}=1.3 \mathrm{GeV}^{2}$ is chosen to match the forward differential cross sections data at around $E_{\gamma}=6$ GeV .

Effects on $\gamma p \rightarrow \omega p$

- From the $\phi-\omega$ mixing, we expect the resonance to also contribute to ω photoproduction.
- The coupling constants $g_{\phi N N^{*}}$ and $g_{\omega N N^{*}}$ are related, and in our study we choose to use the so-called "minimal" parametrization,

$$
g_{\phi N N^{*}}=-\mathrm{x}_{\mathrm{ozt}} \tan \Delta \theta_{V} g_{\omega N N^{*}}
$$

where $\mathrm{x}_{\text {ozI }}=1$ is the ordinary $\phi-\omega$ mixing.

- By using $x_{\text {ozi }}=12$ for the $J^{P}=3 / 2^{-}$resonance and $x_{\text {ozi }}=9$ for the $J^{P}=3 / 2^{+}$resonance, we found that we can explain quite well the DCS of ω photoproduction.
- The large value of $x_{\text {ozi }}$ indicates that the resonance has a considerable amount of strangeness content.

B1

DCS of $\gamma p \rightarrow \omega p$ as a function of t

Data from M. Williams, PRC 80, 065209 (2009)
B2

