Extraction of the $\pi^+\pi^-$ Subsystem in Diffractively Produced $\pi^-\pi^+\pi^-$ at COMPASS

Fabian Krinner for the COMPASS collaboration

Physik-Department E18 Technische Universität München

The COMPASS experiment

Fabian Krinner (TUM E18)

The COMPASS experiment commom Muon Proton Apparatus for Structure and Spectroscopy

Fabian Krinner (TUM E18)

ТШТ

- COMPASS: Currently world's largest data set for diffractive process $p + \pi_{\text{beam}}^- \rightarrow p + \pi^- \pi^+ \pi^$ taken in 2008
 - $(\sim 50 \cdot 10^6 \text{ Events})$
- Exclusive measurement

- COMPASS: Currently world's largest data set for diffractive process $p + \pi_{\text{beam}}^- \rightarrow p + \pi^- \pi^+ \pi^$ taken in 2008 (~ 50 \cdot 10^6 Events)
- Exclusive measurement
- Squared four-momentum transfer
 t' of Pomeron ℙ

- COMPASS: Currently world's largest data set for diffractive process $p + \pi_{\text{beam}}^- \rightarrow p + \pi^- \pi^+ \pi^$ taken in 2008 (~ 50 \cdot 10^6 Events)
- Exclusive measurement
- Squared four-momentum transfer
 t' of Pomeron ℙ
- Rich structure in π⁻π⁺π⁻ mass spectrum

ТШП

- COMPASS: Currently world's largest data set for diffractive process $p + \pi_{\text{beam}}^- \rightarrow p + \pi^- \pi^+ \pi^-_{\text{bachelor}}$ taken in 2008 (~ 50 \cdot 10^6 Events)
- Exclusive measurement
- Squared four-momentum transfer
 t' of Pomeron ℙ
- Rich structure in π⁻π⁺π⁻ mass spectrum
- Also structure in $\pi^+\pi^-$ subsystem

Closer look at $\pi^+\pi^-$ substructures

Closer look at $\pi^+\pi^-$ substructures

Closer look at $\pi^+\pi^-$ substructures

 2π and 3π structures correlated Use isobar model Beam pion excited to intermediate state X⁻

- Beam pion excited to intermediate state X⁻
- Subsequent two-particle decays:

 $X^- \rightarrow \xi \pi^- \rightarrow \pi^- \pi^+ \pi^-$

- Subsequent two-particle decays:
 - $X^- \to \xi \pi^- \to \pi^- \pi^+ \pi^-$
- Fixed amplitudes of the isobars $\xi \to \pi^+\pi^-$ For example: Breit-Wigner

ТШП

- Beam pion excited to intermediate state X⁻
- Subsequent two-particle decays: $X^- \rightarrow \xi \pi^- \rightarrow \pi^- \pi^+ \pi^-$
- Fixed amplitudes of the isobars $\xi \rightarrow \pi^+\pi^-$ For example: Breit-Wigner
- Intensity modeled as $\mathcal{I} = |\mathcal{A}|^2$

phase-space variables τ

ТШП

- Beam pion excited to intermediate state X⁻
- Subsequent two-particle decays: $X^- \rightarrow \xi \pi^- \rightarrow \pi^- \pi^+ \pi^-$
- Fixed amplitudes of the isobars $\xi \to \pi^+\pi^-$ For example: Breit-Wigner
- Intensity modeled as $\mathcal{I} = |\mathcal{A}|^2$

phase-space variables τ

Narrow bins in m_{X⁻} = m_{3π}:
 No assumptions on shape of X⁻

 $J^{PC}M^{\varepsilon}\xi\pi L$

• J^{PC} : spin and eigenvalues under parity and charge conjugation of X^-

• J^{PC} : spin and eigenvalues under parity and charge conjugation of X^-

• M^{ε} : Spin projection and naturality of the exchange particle

- J^{PC}: spin and eigenvalues under parity and charge conjugation of X⁻
- M^{ε} : Spin projection and naturality of the exchange particle
- ξ : Appearing isobar, e.g. $\rho(770)$

- J^{PC}: spin and eigenvalues under parity and charge conjugation of X⁻
- M^ε: Spin projection and naturality of the exchange particle
- ξ : Appearing isobar, e.g. $\rho(770)$
- π : Indicating the bachelor π^- . Always the same

- J^{PC}: spin and eigenvalues under parity and charge conjugation of X⁻
- M^{ε} : Spin projection and naturality of the exchange particle
- ξ : Appearing isobar, e.g. $\rho(770)$
- π : Indicating the bachelor π^- . Always the same
- L: Orbital angular momentum between isobar and bachelor pion

- Intensity $|\mathcal{T}|^2$ plotted
- Each point is an independent fit
- Two 3π channels agree nicely

Phys. Rev. Lett. 115, 082001 (2015

ТШП

ТШΠ

ПΠ

- Isobar amplitudes in established PWA:
 - J^{PC}_ξ: Isobar
 1^{-−}: ρ(770)

ТШΠ

- Isobar amplitudes in established PWA:
 - ► J_{ξ}^{PC} : Isobar
 - ▶ 1^{*-−}: ρ(770)
 - ▶ 2⁺⁺: f₂(1270)

ТШΠ

- Isobar amplitudes in established PWA:
 - ► J_{ξ}^{PC} : Isobar
 - ▶ 1^{-−}: ρ(770)
 - ▶ 2⁺⁺: *f*₂(1270)
 - ▶ 3⁻⁻: ρ₃(1690)

ТШП

- Isobar amplitudes in established PWA:
 - J_{ξ}^{PC} : Isobar
 - ▶ 1^{*-−}: ρ(770)
 - ▶ 2⁺⁺: *f*₂(1270)
 - ► 3⁻⁻: ρ₃(1690)
 - 0^{++} : $f_0(500)$

ТШП

- Isobar amplitudes in established PWA:
 - J_{ξ}^{PC} : Isobar
 - ▶ 1^{*-−}: ρ(770)
 - ► 2⁺⁺: *f*₂(1270)
 - ► 3⁻⁻: ρ₃(1690)
 - 0^{++} : $f_0(500)$
 - ► 0⁺⁺: *f*₀(980)

ТШП

- Isobar amplitudes in established PWA:
 - J_{ξ}^{PC} : Isobar
 - ▶ 1⁻⁻: ρ(770)
 - ► 2⁺⁺: *f*₂(1270)
 - ► 3⁻⁻: ρ₃(1690)
 - ► 0^{++} : $f_0(500)$
 - 0^{++} : $f_0(980)$
- Real shape may be complicated

Example: Shape of 0^{++} intensity resulting from interference of $f_0(500)$ and $f_0(980)$

ТШП

- Isobar amplitudes in established PWA:
 - J_{ξ}^{PC} : Isobar
 - ▶ 1⁻⁻: ρ(770)
 - ► 2⁺⁺: f₂(1270)
 - ► 3⁻⁻: ρ₃(1690)
 - 0^{++} : $f_0(500)$
 - 0^{++} : $f_0(980)$
- Real shape may be complicated

How good are the parametrizations used?

How good is the isobar model?

Example: Shape of 0^{++} intensity resulting from interference of $f_0(500)$ and $f_0(980)$

• Direct fit of isobar shapes computationally not feasible

- Direct fit of isobar shapes computationally not feasible
- Replace with sets of step-like isobars

- Direct fit of isobar shapes computationally not feasible
- Replace with sets of step-like isobars
- Extract binned shape

- Direct fit of isobar shapes computationally not feasible
- Replace with sets of step-like isobars
- Extract binned shape
- Obtain isobar amplitudes directly from the data

Example: Shape of 0^{++} intensity resulting from interference of $f_0(500)$ and $f_0(980)$

Total intensity in conventional PWA

$$\mathcal{I}(m_{3\pi}, m_{\pi^+\pi^-}, \tau) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_i(m_{3\pi}) \psi_i(\tau) \Delta_i(m_{\pi^+\pi^-})\right|^2$$

Fit parameters: Production amplitudes $\mathcal{T}_i(m_{3\pi})$ Fixed: Angular distributions $\psi(\tau)$ and isobar amplitudes $\Delta_i(m_{\pi^+\pi^-})$, $\mathcal{A}_i = \psi(\tau)\Delta_i(m_{\pi^+\pi^-})$

Total intensity in conventional PWA

$$\mathcal{I}(m_{3\pi}, m_{\pi^+\pi^-}, \tau) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_i(m_{3\pi})\psi_i(\tau)\Delta_i(m_{\pi^+\pi^-})\right|^2$$

Fit parameters: Production amplitudes $\mathcal{T}_i(m_{3\pi})$ Fixed: Angular distributions $\psi(\tau)$ and isobar amplitudes $\Delta_i(m_{\pi^+\pi^-})$, $\mathcal{A}_i = \psi(\tau)\Delta_i(m_{\pi^+\pi^-})$

• Fixed isobar amplitudes \rightarrow Sets of bins:

$$\Delta_i(m_{\pi^+\pi^-}) o \sum_{ ext{bins}} \Delta_i^{ ext{bin}}(m_{\pi^+\pi^-}) \equiv [\pi\pi]_{J^{PC}}$$

$$\Delta_i^{\mathrm{bin}}(m_{\pi^+\pi^-}) = egin{cases} 1, & ext{if } m_{\pi^+\pi^-} & ext{in the bin.} \ 0, & ext{otherwise.} \end{cases}$$

Total intensity in conventional PWA

$$\mathcal{I}(m_{3\pi}, m_{\pi^+\pi^-}, \tau) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_i(m_{3\pi})\psi_i(\tau)\Delta_i(m_{\pi^+\pi^-})\right|^2$$

Fit parameters: Production amplitudes $\mathcal{T}_i(m_{3\pi})$ Fixed: Angular distributions $\psi(\tau)$ and isobar amplitudes $\Delta_i(m_{\pi^+\pi^-})$, $\mathcal{A}_i = \psi(\tau)\Delta_i(m_{\pi^+\pi^-})$

• Fixed isobar amplitudes \rightarrow Sets of bins: $\Delta_{i}(m, \dots) \rightarrow \sum \Delta_{i}^{bin}(m, \dots) =$

$$\Delta_i(m_{\pi^+\pi^-}) o \sum_{
m bins} \Delta_i^{
m bin}(m_{\pi^+\pi^-}) \equiv [\pi\pi]_{J^{PC}}$$

$$\Delta_i^{\mathrm{bin}}(m_{\pi^+\pi^-}) = egin{cases} 1, & ext{if } m_{\pi^+\pi^-} & ext{in the bin.} \ 0, & ext{otherwise.} \end{cases}$$

• Each $m_{\pi^+\pi^-}$ bin behaves like an independent Partial Wave:

$$\mathcal{I} = \left| \sum_{i}^{\text{waves bins}} \sum_{\text{bin}}^{\text{bin}} \mathcal{T}_{i}^{\text{bin}}(m_{3\pi}) \psi_{i}(\tau) \Delta_{i}^{\text{bin}}(m_{\pi^{+}\pi^{-}}) \right|^{2}$$

- Freed isobar PWA: Two-dimensional result: $T_i(m_{3\pi}, m_{\pi^+\pi^-})$
- First analysis: 3 waves with freed isobars:
 - $0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S$
 - $1^{++}0^+[\pi\pi]_{0^{++}}\pi P$
 - $2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D$

arXiv:1509.00992 [hep-ex]

- Other waves still with fixed isobar amplitudes: $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$
 - ► In principle also possible for 1⁻⁻, 2⁺⁺, ... isobars

Two-dimensional intensity for waves with freed isobars

 $\pi^-\pi^+$ SYSTEM MASS OF THE

MASS OF THE $\pi^-\pi^+\pi^-$ SYSTEM

This is not a Dalitz plot

Fabian Krinner (TUM E18)

ТШП

Two-dimensional intensity for waves with freed isobars

 $0^{-+}\overline{0^{+}}[\pi\pi]_{0^{++}}\pi S$ Different t' regions

 $0^{-+}\overline{0^{+}}[\pi\pi]_{0^{++}}\pi S$ Different t' regions

$0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S$ Slices in $m_{3\pi}$

 $0.19 < t' < 0.33 (GeV/c)^2$

 $0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S$ Slices in $m_{3\pi}$

Fabian Krinner (TUM E18)

- Sum up all amplitudes in $m_{\pi^+\pi^-}$
- Compare with sum of conventional f₀(...)π⁻ amplitudes

- Sum up all amplitudes in $m_{\pi^+\pi^-}$
- Compare with sum of conventional f₀(...)π⁻ amplitudes
- π(1800) peak visible

- Sum up all amplitudes in $m_{\pi^+\pi^-}$
- Compare with sum of conventional f₀(...)π⁻ amplitudes
- π(1800) peak visible
- Novel method reproduces shape in *m*_{3π}

 $1^{++}\overline{0^+}[\pi\pi]_{0^{++}}\pi P$

 $1^{++}\overline{0^+}[\pi\pi]_{0^{++}}\pi P$

$1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P$ Slices in $m_{3\pi}$

$0.19 < t' < 0.33(\text{GeV}/c)^2$

 $1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P$ Slices in $m_{3\pi}$

Fabian Krinner (TUM E18)

Extraction of the $\pi^+\pi^-$ Subsystem

ТШ

• Sum up amplitudes in the *f*₀(980) region

- Sum up amplitudes in the *f*₀(980) region
- Compare with 1⁺⁺0⁺f₀(980)πP wave from established PWA

- Sum up amplitudes in the *f*₀(980) region
- Compare with 1⁺⁺0⁺f₀(980)πP wave from established PWA
- New resonance *a*₁(1420) reproduced
- Not an artifact of isobar parametrizations

- Sum up all amplitudes in m_{π⁺π⁻}
- Compare with sum of conventional f₀(...)π⁻ amplitudes
 - ► $1^{++}0^+f_0(500)\pi P$
 - ▶ $1^{++}0^+f_0(980)\pi P$

- Sum up all amplitudes in m_{π⁺π⁻}
- Compare with sum of conventional f₀(...)π⁻ amplitudes
 - ► $1^{++}0^+f_0(500)\pi P$
 - ► $1^{++}0^+f_0(980)\pi P$
- Compatible shapes
- Isobar model works

 $2^{-+}\overline{0^+}[\pi\pi]_{0^{++}}\pi D$ Different t' regions

 Novel method:
 Fixed isobar amplitudes replaced by sets of binned functions [ππ]_{JPC}

- Novel method:
 Fixed isobar amplitudes replaced by sets of binned functions [ππ]_{J^{PC}}
- Study resonance production in three dimensions: m_{3π}, m_{π⁺π⁻} and t'

- Novel method:
 Fixed isobar amplitudes replaced by sets of binned functions [ππ]_{J^{PC}}
- Study resonance production in three dimensions: m_{3π}, m_{π⁺π⁻} and t'
- Allows to extract m_{3π} dependence of π⁺π⁻ amplitudes

- Novel method:
 Fixed isobar amplitudes replaced by sets of binned functions [ππ]_{J^{PC}}
- Study resonance production in three dimensions: m_{3π}, m_{π⁺π⁻} and t'
- Allows to extract m_{3π} dependence of π⁺π⁻ amplitudes
- The new $a_1(1420) \rightarrow f_0(980)\pi^-$ is confirmed

- Novel method:
 Fixed isobar amplitudes replaced by sets of binned functions [ππ]_{J^{PC}}
- Study resonance production in three dimensions: m_{3π}, m_{π⁺π⁻} and t'
- Allows to extract m_{3π} dependence of π⁺π⁻ amplitudes
- The new $a_1(1420) \rightarrow f_0(980)\pi^-$ is confirmed
- t' dependent, broad structures at small m_{3π}, m_{π⁺π⁻} → Possible non-resonant processes

Effects from imperfect parametrizations in other waves

 \rightarrow Free isobar-amplitudes for all large waves

- Effects from imperfect parametrizations in other waves

 \rightarrow Free isobar-amplitudes for all large waves

Goal: Free 11 waves

 $0^{-+}0^{+}f_{0}(980)\pi S$ $0^{-+}0^{+}\rho(770)\pi P$ $1^{++} 0^{+} f_{0}(980) \pi P$ $1^{++} 0^{+} \rho(770) \pi S$ $1^{++} 1^{+} \rho(770) \pi S$ $2^{-+}0^{+}f_{0}(980)\pi D$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}0^{+}\rho(770)\pi F$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}1^{+}f_{2}(1270)\pi S$ $2^{++} 1^+ \rho(770) \pi S$

 Effects from imperfect parametrizations in other waves

 \rightarrow Free isobar-amplitudes for all large waves

- Goal: Free 11 waves
 - 75% of the total intensity
 - All waves that contribute more than 1% to the intensity

 $0^{-+}0^{+}f_{0}(980)\pi S$ $0^{-+}0^{+}\rho(770)\pi P$ $1^{++} 0^{+} f_{0}(980) \pi P$ $1^{++} 0^{+} \rho(770) \pi S$ $1^{++} 1^{+} \rho(770) \pi S$ $2^{-+}0^{+}f_{0}(980)\pi D$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}0^{+}\rho(770)\pi F$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}1^{+}f_{2}(1270)\pi S$ $2^{++} 1^+ \rho(770) \pi S$

 Effects from imperfect parametrizations in other waves

 \rightarrow Free isobar-amplitudes for all large waves

- Goal: Free 11 waves
 - 75% of the total intensity
 - All waves that contribute more than 1% to the intensity
- Challenges:
 - Drastic increase in number of parameters
 - Appearance of linear dependences, which cause ambiguities

 $0^{-+}0^{+}f_{0}(980)\pi S$ $0^{-+}0^{+}\rho(770)\pi P$ $1^{++} 0^{+} f_{0}(980) \pi P$ $1^{++} 0^{+} \rho(770) \pi S$ $1^{++} 1^{+} \rho(770) \pi S$ $2^{-+}0^{+}f_{0}(980)\pi D$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}0^{+}\rho(770)\pi F$ $2^{-+}0^{+}\rho(770)\pi P$ $2^{-+}1^{+}f_{2}(1270)\pi S$ $2^{++} 1^+ \rho(770) \pi S$