Experimental investigation for diquark degrees of freedom in a charmed baryon at J-PARC

T. N. Takahashi for the J-PARC E50 collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

MENU2016 at Kyoto

- Physics motivation
- Diquark correlation
- Experiment
 - J-PARC High-momentum beam line
 - E50 spectrometer system
 - Expected spectrum
- Summary

- Fundamental building blocks of QCD = quarks and gluons
- Hadron dynamics : constituent quark
 - ground state
 - nuclear force
- excited states, exotic resonance
 - not well described by constituent quark model
- diquark as effective degrees of freedom

Quark correlation

- color-spin interaction between quarks $\propto 1/m_i m_j$
- 3 light diquark pairs \Rightarrow difficult to distinguish
- Heavy $Q \Rightarrow$ separate to Q and q q

We will investigate the diquark correlation by measurement of charmed baryon's properties

- Level structure
- Production rate
- Decay branching ratio

Schematic level structure of heavy baryons

- λ/ρ modes
- Heavy quark spin doublet $(\vec{s}_{HQ} \pm \vec{j}_{rest})$ for $j_{rest}>0$
 - ► Heavy quark symmetry ⇒ smaller mass splitting (or degeneracy) of doublet

- t-channel dominant
- λ mode excitation at forward angles
- one-step reaction

Production (2)

- The production rates are determined by the overlap of the wave function of initial and final states.
- momentum transfer \Rightarrow orbital excitation
- Heavy quark doublet
 - spin/parity \Rightarrow relative ratio

Y_c^* Decay pattern

Two decay patterns for two-body decay

- $Y_c^* \to \pi + Y_c$
- $Y_c^* \to D + N$

J-PARC E50 experiment

- $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$ reaction @ 20 GeV/c
- Missing mass spectroscopy
 - ► $D^{*-} \rightarrow \overline{D}^0 \pi_s^-$ (67.7%) ► $\overline{D}^0 \rightarrow K^+ \pi^-$ (3.93%)
- Decay measurement
 - π^{\pm}, p from Y_c^*

Systematic measurement

- Excited states search
- Excitation energy
- Production cross section
- Decay property
- \Rightarrow Diquark correlation

Estimation of production cross section

- High energy 2-body reaction based on the Regge theory
- Normalized to strangeness production \Rightarrow Charm production: $\sim 10^{-4}$
- No old data @ 10-20 GeV/c
- Assumed production cross section: $\sigma \sim 1 \text{ nb}$
- c.f. σ < 7 nb (BNL data)

Small production cross section (expected)

 \Rightarrow We need high-rate beam & multi-porpose spectrometer system.

J-PARC hadron hall

High momentum beam line for secondary beam

- High intensity
 - > 1.0×10⁷ Hz π (< 20 GeV/c)</p>
 - 6×10⁷ π⁻/spill on E50 experimental target
 - Unseparated beam
- High resolution
 - △p/p ~0.1% (rms)
 - Momentum dispersive optics method

Sanford-Wang acceptance: 2 msr%, 132 m Prod. Angle = 0 deg. (Neg.) 1.0E+09 Counts/sec 1.0E+08 π 1.0E+07 1.0E+06 K-1.0E+05 1.0E+04 **p**_{bar} 1.0E+03 5 10 15 20 [GeV/c]

Spectrometer (Realistic design is ongoing.)

Spectrometer (High-rate detectors)

Spectrometer (Charmed baryon prod. and decay)

Spectrometer performance

Acceptance

- Momentum: 0.2–20 GeV/c
- Anale: $< 40^{\circ} \Rightarrow D^*$: 50–60%
- Decay particle~80%
- Resolution

• $\Delta p/p = 0.2\%$ @ 5 GeV/c

• $\Delta M_{\Lambda_c^*} = 10 \text{ MeV} @ 2.8 \text{ GeV}/c^2$

Decay angle: Λ_c (2940)⁺ $\rightarrow \Sigma_c$ (2455)⁰ + π^+

Expected spectra

- ~2,000 counts @ N_{pot} = 8.64×10¹³ (100 days, $\varepsilon_{total} = 0.5$)
- Λ_c (g.s.): 1 nb production cross section
 - Production ratio for excited states
- Background: simulated by JAM code.
 - ► *D*^{*} tagging reduces B.G. by a factor of 2×10⁶.
- Achievable sensitivity of 0.1 0.2 nb (3 σ level, Γ < 100 MeV)

Many physics channels

Main channel: Charmed baryons (Q + qq)

• $\pi^- + p \rightarrow Y_c^+ + D^{*-}$

Data rate: < 0.1 kHz

Byproducts

• Ξ_c baryons

$$\pi^- + p \rightarrow \Xi_c^0 + D^{*-} + K^+$$

• *Y* baryons: yield = $Y_c \times 10^4$

$$\pi^- + p \to Y^0 + K^0_s$$

$$\pi^- + p \rightarrow Y^0 + K^{*0}$$

•
$$\pi^- + p \rightarrow Y^- + K^{*+}$$

$$\quad \bullet \quad \pi^- + p \to \Theta^+ + K^{*-}$$

• Ξ baryons: yield = $Y_c \times 10^3$

►
$$K^- + p \to \Xi^0 + K^{*0}$$

► $K^- + p \to \Xi^- + K^{*+} : (K_s^0 + \pi^+)$
► $\pi^- + p \to \Xi^- + K_s^0 + K^+$

 $\quad \bullet \ \pi^- + p \rightarrow \Xi^- + K^{*0} + K^+$

- Ω baryons : yield = $Y_c \times 10^2$
 - $K^- + p \rightarrow \Omega^- + K_s^0 + K^+$
 - $K^- + p \rightarrow \Omega^- + K^{0*} + K^+$
- Drell-Yan channels

$$\pi^- + p \rightarrow n + \mu^+ + \mu^-$$

$$K^- + p \rightarrow Y^0 + \mu^+ + \mu^-$$

* K beam rate $\sim 1/100$

- Yield: 10⁴–10⁵/day @ 1 μb
 - 4 g/cm², 6 × 10⁷/spill (~ 10⁶/spill for K beam)
 - 50% acceptance, 50% efficiency (DAQ, PID, analysis)
- Y: qq + Q system @ strangeness sector
 - $\pi^- p \rightarrow Y^* + K^{*0}$ reaction
 - Production ratio: qq excitation mode
 - Decay branching ratio: $\Gamma(N\overline{K})/\Gamma(\pi\Sigma)$
- Ξ : a + QQ system
 - $K^- + p \rightarrow \Xi^* + K/K^*$ and $\pi^- + p \rightarrow \Xi^* + K/K^* + K$ reactions
 - ► Heavier diquark (q s, s s) system ?
 - λ and ρ mode excitation interchange
- Ω: QQQ system
 - $K^- + p \rightarrow \Omega^* + K/K^* + K$ reaction
 - Much simpler system: Diquark less system ?

Data acquisition system : free-streaming DAQ

Frontend modules	Buffer PCs	Filter PCs	Storage
 Self or periodic trigger ~30,000 ch 	 Data accumulation ~50 GB/spill (~250 Gbps, 2 sec.) Derandomized → ~10GB/sec 	• Event reconstruction using CPUs and/or GPUs	(<0.5 GB/spill)Local storageTransferred to KEKCC/RCNP

- High speed and/or high performance detectors
 - Scintillating fiber tracker
 - T0 timing counter
 - Large RPC for TOF measurement (collaboration with LEPS2)
- High speed DAQ
 - Front-end electronics for trigger-less readout
 - Test bench for free-streaming DAQ
 - Load-balancing of CPU/GPU (collaboration with ALICE O2 project)
 - Fast on-line track reconstruction
- J-PARC High-p collaboration
- J-PARC E16 (talk by Y. Komatsu, 26-MNI-2-2)
- J-PARC E50
- future Heavy Ion project at J-PARC

- Charmed baryon spectroscopy
 - Essential way to understand hadron structure
 - Diquark correlation: λ and ρ mode excitation
- Experiment at the J-PARC high-p beam line
 - Inclusive measurements by missing mass spectroscopy with multi-purpose spectrometer system
 - Unique information from the production measurement
 - Data taking of many reaction channels by high-speed DAQ
- Systematic study of baryons at J-PARC
 - Excitation energy, production, decay with strangeness sector: qq + Q, q + QQ, QQQ
 - pilot studies for the K10 beam line
 - Systematics to understand hadron structure

RCNP

- S. Ajimura, H. Asano, T. Nakano,
 H. Noumi, K. Shirotori, Y. Sugaya,
 T.N. Takahashi, T. Yamaga
- KEK
 - K. Aoki, Y. Morino, K. Ozawa
- RIKEN
 - Y. Ma, F. Sakuma
- Tohoku ELPH
 - T. Ishikawa
- JAEA
 - K. Tanida, Y. Ichikawa
- Kyoto U
 - M. Naruki

- Tohoku U
 - K. Miwa
- Academia Sinica
 - T. Sawada, C.W. Chang
- Korea U
 - J.K. Ahn
- Osaka U
 - R. Honda
- Yamagata U
 - Y. Miyachi
- JLab
 - J.T. Goetz

Spectrometer (Drell-Yan)

